
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Secure Web: Integrating AI Driven Vulnerability

Management and Anomaly Detection in AWS

Based E - Commerce Platforms

Sai Tarun Kaniganti

Abstract: Web applications have become integral to modern business operations, driving commerce, social interactions, and various

services. However, their increasing usage has made them prime targets for hackers, necessitating robust security measures. This paper

explores the most effective strategies for securing web applications, including developing secure architectures and integrating AI and ML

to enhance security levels. Key technologies like Blockchain and Zero Trust Architecture (ZTA) are examined for their potential to further

fortify web application security. The paper includes a use case featuring AWS and Data Science experiences in AI and ML-based real-

world projects, demonstrating how advanced technologies and practices can provide comprehensive protection for users' sensitive data.

Keywords: web application security, AI, machine learning, Blockchain, Zero Trust Architecture

1. Introduction

As in the case of Web applications, they have become

necessary in today's business organizations to support

commerce, social interactions, and a host of services.

However, the use of these applications has increased

significantly in recent years, therefore becoming a favorite of

hackers. It has also emphasized the need for adequate security

measures to safeguard web applications since they contain the

user's personal information. This paper aims to study the most

effective way to secure web applications, develop a secure

architecture for web applications, and discuss how to

incorporate AI and ML in increasing the security level of web

applications. It also contains a use case of AWS and Data

Science experience in AI and ML - based real - world

projects. Blockchain and Zero Trust Architecture (ZTA) are

two emerging technologies that present further opportunities

for enhancing web application security. It remains true that

blockchain can offer efficient logging and decentralized,

secure structures to maintain data credibility and openness.

Zero Trust Architecture is contrary to this since it has taken

the security of networks from perimeter protection and

replaced it with checking every access request, no matter

where it comes from within the network. This model

incredibly minimizes the chances of internal threats and

lateral mobility by dangerous actors.

Figure 1: Zero Trust Architecture

In the case of AWS, integrating services like AWS CloudTrail

and AWS Security Hub can help with monitoring and

compliance since it offers a single platform to review the

security and compliance position of AWS environments

(Singh Virdi, 2018). Together with AI and ML, these services

provide a strong, reliable, and adaptive security platform that

can adapt to today's threats. With the inclusion of such

advanced technologies and practices, businesses can enhance

the durability of web applications in a way that provides

comprehensive protection for users' sensitive data and

maintains users' trust in the new landscape of threats. This

paper primarily seeks exposure to these best practices and

technologies in securing web applications.

1.1 Security Best Practices

1) Input Validation and Sanitization

Sanitization and validation of the input are mandatory to

protect applications against injection attacks like SQL and

XSS injections. To eliminate the possibility of running

undesirable code, web applications must verify the inputs

entered by the clients against set specifications and remove

any potential malicious characters from them. It is possible to

improve input validation and sanitization mechanisms with

the help of a positive security model that allows only the

inputs known to be safe, not a negative model, which tries to

filter out the evil inputs. Having libraries and frameworks,

which include predefined validation and sanitization

methods, can promote such practices across the development

team. Also, output encoding is very helpful in ensuring that

any content created by the users displayed in the web

application is done safely so that scripts injected into the

content cannot be executed. Fuzz testing and penetration

testing should be performed routinely to identify and address

any security issues that may be present concerning input

handling. Using CI/CD for these practices would enable the

input validation and sanitization to be included in the

development pipeline.

2) Secure Authentication and Authorization

In access control, applying effective authentication and

authorization measures is crucial to prevent unauthorized

users from accessing valuable information. Measures that can

be employed include MFA, Password policy, and RBAC. The

security of authentication and authorization can be further

enhanced by incorporating Single Sign - On (SSO) systems

that effectively reduce the number of logins required from the

user while enhancing the system's security (Cakir, 2013). An

adaptive authentication method is suggested to be used where

the user has to pass different levels of authentication

depending on the user's usage and activities. Daily review of

the authentication logs to look for suspicious activities

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1921

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

ensures that the security team promptly responds to an

incident. Adding to the policies for password change

processes, it is also essential to ensure that the policies do not

allow the re - use of passwords. OAuth 2.0 and OpenID

Connect are typical examples of identity management

solutions that can offer standardized, secure, and scalable

forms of authentication (Naik & Jenkins, 2017). Periodically

reviewing and updating the access rights reduces instances of

the user being granted more permissions than necessary to

avoid compromising on the principle of least privilege.

Figure 2: Introduction of Single Sign On

3) Secure Communication

For data transmitted between two or more computers, it is

essential not to leave the data open to interception through

tools such as Transport Layer Security (TLS) or Secure

Sockets Layer (SSL). Web applications should always use

https to prevent tampering of data and eavesdropping on the

user data. Secure communication protocols should be further

enhanced through frequent updates of the cryptographic

algorithms, as well as essential management practices to

combat emerging threats (Grammatikis et al., 2029). Other

measures that can be employed include using certificate

pinning to enhance the server's validation, which will also

eliminate men in the miman - in - the - middlen HTTP Strict

Transport Security (HSTS) is set; browsers are restricted on

how they can access a web application and are compelled to

communicate only over secure connections, thus lowering the

prospects for protocol downgrade attacks. The SSL/TLS

settings can be checked through a tool called Qualys SSL

Labs, where possible vulnerabilities in the configurations

would be highlighted. To sum up, encrypting data in repose

and encrypting it during transmission is reliable. CSP headers

help minimize the attack vector of XSS since one can limit

the sources from where content may be loaded.

4) Regular Security Updates and Patching

Updating web applications and their dependencies to the

latest security patches is crucial in avoiding compromise from

known threats. Updating these features reduces the likelihood

of cybercriminals exploiting computers. Developing a good

patch management program is the most critical factor in

ensuring that patch management is effective. Automated tools

can be adapted to apply updates to the systems to manage the

patch. Ranking patches by the rank of the threat and relative

importance of the systems allows for addressing crucial risks

at first. Keeping a record of all software and their

dependencies within the application makes it easy to

determine which ones need updating. Applying the patches to

a staging environment before applying them in the production

environment can help avoid disruptions arising from the

updates. The rollback plan enables the correction of the

updates in an organized manner in case of new problems.

Subscribing to vulnerability databases and security advisories

helps the organization track new threats and the latest patches

accurately and quickly.

5) Secure Coding Practices

The applications should be coded well with standards that

prevent threats, such as input validation, output encoding, and

proper error handling. It is recommended that one has to

perform code reviews periodically and security tests to

identify such issues before deployment. Other measures that

can be taken in this respect include incorporating the

principles of secure coding, including OWASP Secure

Coding Practices, to enhance the overall framework for

developers (Ngwenya & Futcher, 2019). Standard

development training in secure coding can help developers be

aware of typical susceptibility and how to prevent it.

Figure 3: OWASP Secure Coding Practices

The application of security in the development processes

through activities such as threat modeling and secure design

reviews ensures that security is considered in the early stages

or at every step in the development process. Static and

dynamic code analysis: These are the two application security

testing techniques that can be used to find the flaws in the

code and running applications. It is also essential to avoid

hard - coding application login credentials, failing to sanitize

SQL statements using prepared statements, and handling

errors safely. Organizing the code reviews based on security

and conducting them frequently helps improve the team's

security culture.

Proposed Secure Architecture

In professional experience, profound web application security

measures have been implemented, including the following:

The proposed architecture considers AI - based approaches to

vulnerability management and detection of anomalies to

improve security. With AI and ML models, the system can

easily track and look for any anomaly or threat and reprogram

itself to counter emerging threats. This architecture entails the

application of various layers of security, such as the network

security layer, the application security layer and the data

security layer, respectively. Security measures include virtual

private clouds limiting traffic access from outside the

network, security groups regulating traffic in and out of

instances, and network access control lists. Web application

firewalls, which are tools that work on top of the HTTP layer,

are employed to filter and scrutinize incoming web requests

to prevent cross - site scripting and SQL injection, among

other types of attacks. Sensitivity and confidentiality of the

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1922

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

data are warranted by encrypting data both at rest and in

transit with encryption keys from AWS KMS (Rath et al.,

2029). Logging and monitoring are also highlighted within

the architecture using AWS CloudTrail and AWS

CloudWatch for writing and recording user activities and

system metrics. By applying an extensive approach, security

is implemented in all levels of the web application, thus

offering protection from various threats. The architecture

consists of the following components: The architecture

consists of the following components:

Figure 4: Web Application Firewall

Web Application Firewall (WAF)

A WAF monitors traffic, filters out potential threats, and

prevents malicious traffic. It can protect against threats such

as SQL injection, XSS attacks and DDoS attacks. A WAF can

also be configured with customized legal guidelines for the

particular application to make it superior to particular attacks.

The WAF can be configured with threat signature feeds to

update itself frequently and adapt to the rules set. Rate

limiting and anomaly detection incorporated in the WAF

assist in combating the DDoS attack (Devi & Subbulakshmi,

2017). WAF rules are often updated and tuned to perform and

protect effectively. Features of logging and alerting the WAF

enable security operations teams to get real - time information

on security events for immediate management. There is

always the option to leverage managed WAF services, which

helps keep the solution operating in the background and

actively protects the organization 24/7 without much need for

intervention.

Load Balancer

A load balancer helps manage traffic by redistributing the

load to many Web servers to achieve availability and

capacity. It also works as a reverse proxy and conceals the

internal network layout. The load balancer also provides

security by SSL termination and helps the web servers avoid

the process of encryption and decryption, which slows the

process. It can also direct traffic with reference to the

application layer details like cookies and session persistence

to deliver a smooth experience to the users. They help ensure

that only healthy instances are used and that traffic is always

directed to high - availability instances. It can also work with

firewall rules limiting access based on the IP addresses and

geolocations. Modern load balancers have automatic

scalability, a significant security advantage, and CDN support

for performance enhancement. It is critical to monitor and

adjust the load balancer settings continuously to ensure the

efficiency and security of the system.

Web Servers

The web application is hosted on a web server, and the server

receives client requests. They use secure connection protocols

such as Secure Hypertext Transfer Protocol (S - HTTP) and

Transport Layer Security (TLS) and apply measures

including proper input validation and sanitization. Some of

the precautionary measures that should be taken include

restricting the web servers to the lowest privilege level so that

the damage is minimized in case of an attack. Applying

containerization technologies such as Docker can also bring

additional isolation levels for applications, thus improving

their security. Security headers, including CSP and HSTS,

can also be used to protect against well - known threats

(Weichselbaum et al., 2026). Web servers should have

security audits and vulnerability checkups to help identify

possible dangers. The use of configuration management tools

to automate the deployment of web servers conforms to

standards to enhance security. That is why it is crucial to

guarantee that web servers are included in disaster recovery

management to provide consistency in the event of an

occurrence.

Figure 5: Transport Layer Security in Cyber Security

Application Servers

The server processes the web applications and is responsible

for business logic and data processing. They use channels that

require a secure connection with the web servers. There are

significant security concerns in any application server, which

are in the business logic; therefore, it is recommended that

application servers use Secure Coding Techniques.

Implementing API gateways can limit API access from an

application server to other services and protect them. Static

and dynamic security analyses are performed periodically to

ensure that application server code is not prone to

vulnerabilities at any stage of its life cycle. To reduce the risk

of failure or compromise, application servers should be

monitored for performance and security indicators that may

indicate a problem. Using runtime application self - protection

(RASP) can identify and prevent real - time attacks in the

application flow (Yin et al., 2018). In the case of application

servers, it is essential to ensure that they are updated and

patched as frequently as possible to check for insecurity.

Using orchestration tools or an appropriate workload can

optimize application server deployment and enhance the

protection of applications.

Database Servers

Database servers are responsible for storing and managing

application data. It has robust access control and encryption

over highly classified information. The database servers

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1923

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

should protect the data at rest and in transit by applying

encryption. The DAM option helps monitor database activity

in real time and indicates possible security threats or user

invasions. Database firewalls are helpful in ensuring that only

authorized users access the databases and protect against SQL

injection attacks (Manikanta & Sardana, 2012). Security

audits and compliance test checks help follow all the legal

standards and protocols. Enforcing RBAC and least privilege

principles limits access to information that ill - intention

employees can potentially manipulate. Database replication

and backup solutions should be available to maintain data

availability and integrity. Database management should be

automated to ensure that the system is always patched with

new security fixes.

Monitoring and Logging

There are procedures for monitoring and logging the system

to tackle security issues. Monitoring and logging should also

be centralized through the Information and Event

Management (SIEM) tool to ensure the various components

are visible overall. Applying anomaly detection and machine

learning ideas can help improve the ability to detect

suspicious actions that can speak about security breaches.

They should be accommodated with encryption and integrity

check algorithms to prevent tampering with the logs.

Figure 6: Advantages of SIEM

These are used for reviewing and analyzing logs, which help

explicate security incidents and refine subsequent responses.

Another way is to set up alerts on other critical security events

so that such events are promptly dealt with. While using it,

the system can be integrated with other platforms that handle

different incidents, making resolving such security threats

easier. Compliance with logging regulations and standards is

significant in maintaining security, as outlined below.

1.2 AI and ML for improving the security systems

The application of AI and ML can improve web applications'

security by improving threat identification and management

and automating essential security processes. These

technologies make security measures more hi - tech and make

it easier to decipher and address threats. Artificial intelligence

can be used to check large amounts of information to detect

incidents such as violations of security or hacker attacks. For

example, anomaly detection models may identify a user who

accesses resources in a way that is not typical or an increase

in network traffic is detected, then security personnel can take

necessary action before these turn into a security threat.

Threat intelligence platforms that rely on artificial

intelligence can collect and analyze data from various sources

and give a detailed description of threats in the formation

process, allowing for more effective anti - threat measures.

Besides threat identification, AI and ML can advance

vulnerability management by periodically searching for

application vulnerabilities and offering recommendations on

addressing them. These technologies can sort out the

vulnerabilities depending on their danger, so the most severe

problems are dealt with first. Security operations can also be

automated using AI and ML to accelerate security incident

response time and the time taken in event identification,

analysis, and response. This automation reduces the amount

of work that needs to come from the security teams to achieve

these goals. In addition, using AI and ML in web application

security also boosts flexibility when addressing new threats

(Liang et al., 2019). New threats are evolving, so traditional

security methods may not be the best solution. However, AI

and ML systems are adaptive and, hence, can learn new tricks

and improve at identifying and preventing new attacks. By

applying these technologies, organizations can design more

robust security models that can effectively counter existing

and emergent threats. In summary, AI and ML integration

constitutes a great leap forward in the search for superior web

application security. Here are some ways AI and ML can be

integrated into the proposed architecture: Here are some ways

AI and ML can be integrated into the proposed architecture:

1) Anomaly Detection

ML algorithms can identify abnormally behaving patterns in

communication network traffic, user interactions, and system

or application logs. This makes it easier to identify those

threats that threaten the organization's security and avoid data

loss. Anomaly detection systems can also utilize other

techniques, such as clustering and principal component

analysis (PCA), for the detection of novel threats that may not

be recognizable by traditional methods (Patcha & Park,

2007). Using both CL and ULS methods enhances the

effectiveness and efficiency of the detection system. Data

from new sources enables the models to learn continuously,

making them up - to - date with emerging threats. Real - time

alerting and response allows security personnel to respond

effectively after identifying suspicious activity. It is also

important to note that anomaly detection can be combined

with other security tools like IDS and SIEM systems to offer

a strong defense line. Continuous calibration and rechecking

of these models to the new threats makes it possible to work

continuously.

2) Vulnerability Scanning

There are also vulnerability scanners that AI can power to

scan code and configurations to determine possible

vulnerabilities in web applications. They also offer advice on

how the issue can be rectified, which is helpful for developers

who wish to prevent such problems. Modern AI - based

vulnerability scanners can use NLP methods to scan

comments in code and documentation and commit messages

for security risks (Boivin, 2018). They can mimic the attacks

of different types and penetration tests to give a clearer picture

of the risks involved. When these scanners are integrated with

CI/CD pipelines, developers can identify and fix the

vulnerabilities during the SDLC.

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1924

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 7: CI/CD Vulnerability Scanning

The level of risk can also prioritize vulnerabilities, the

potential consequences, or how easily they can be exploited

with the help of AI algorithms, which makes it easier to

allocate resources. These systems can enhance their detection

of such issues and events due to the constant learning from

security breaches and patches. Enabling automatic report

generation and seamless interaction with issue - tracking

software simplifies the remediation process for development

teams.

3) User and Entity Behavior Analytics (UEBA)

In UEBA systems, ML creates a normative behavior model

for users and entities interacting with the web application.

Staying at these baselines helps identify insider threats or

compromised accounts. UEBA systems can consider the

context, such as time of day, geography, or the device used,

to enhance the behavior standard and thus increase the

likelihood of the detection. Unlike other approaches that can

be utilized in UEBA, ensemble learning methods allow

predictions from various models to be integrated to improve

the overall reliability of the results. UEBA can be integrated

with access management systems to provide dynamic risk -

based authentication and authorization where the level of

access provided changes based on the alerts generated

(Shukla & Jain, 2016). This makes the ML models dynamic

due to feedback loops provided to the models as the users

change their behaviors and the emerging threats. The use of

visualization tools and dashboards also aids security teams in

monitoring behavior patterns and early detection of any shift.

Integration with other security tools like endpoint detection

and response improves overall threat detection and prevention

measures.

4) Automated Patching and Updates

AI systems can enhance work in prioritizing and applying

security updates and patches because they can detect them

independently. This reduces the risk associated with

exploiting old software that is still in use in various

organizations. AI - driven systems can bring benefits to the

table, including the ability to evaluate compatibility levels of

patches with existing infrastructure and systems to avoid

patch deployment problems. They can ensure that the updates

are done when they are least likely to affect the users and can

use analytical tools to predict the system's behavior upon

applying patches. Using automated patching in conjunction

with the configuration management tools guarantees that the

changes made are uniform across all the environments. Such

AI systems can also supply rollback strategies and testing

services to ensure the success of updates. These constant

patches should be monitored and learned from to make future

updates smoother and better. Using cloud services in patch

management ensures they are elastic and can manage many

infrastructural differences.

Lessons Learned Across AWS Initiatives

Several projects have highlighted how these security best

practices and AI/ML integration can be applied on AWS,

based on my background as a data scientist with deep

experience in the field. The following projects demonstrate

how the various AWS services can be employed to improve

security and streamline the process of implementing machine

learning. The features of AWS, like Amazon SageMaker,

AWS Lambda, and Amazon S3, have been utilized effectively

in these projects for deploying, managing and securing the

machine learning models on the scalable infrastructure of

AWS (Mishra, 2019). Using IAM & KMS from AWS has

also provided the necessary security measures for the

company data and kept abreast with the current compliance

laws.

Figure 8: Best Practices and Lessons Learned

Implementing AI and ML into AWS has optimized the

features of complex workflows, predictive analysis, and real

- time data analysis. These have improved monitoring and

threat detection through AWS CloudTrail and Amazon

GuardDuty for operations to be secure in handling data. These

projects also emphasize applying AI/ML algorithms and

methodologies in AWS, focusing on security to ensure that

data science solutions are effective, scalable, and secure.

From these implementation scenarios, the possibilities of

AWS in enabling future innovation and security in AI/ML

projects are seen. Thus, it is an ideal platform for future

development in the field.

Project 1: Secure E - commerce Platform

In this project, we designed and implemented a secure e -

commerce system that utilized Amazon EC2, Amazon RDS,

and AWS WAF. The architecture design included a load

balancer, web servers, application servers, and database

servers configured to use secure communication protocols

and access control measures. Intelligent automation was used

to analyze user activities and identify fraudulent actions. AI

was also applied to make the inventory of products more

effective and to create a more individual approach for users,

which in turn improved security and usability. Applying

machine learning algorithms to the recommendation system

has made customers more interactive while not compromising

security measures (Chio & Freeman, 2018). One of the

impressive features of the architecture implemented was the

capacity for flexibility regarding user volumes. Automated

scaling of the groups was a feature that would help adjust the

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1925

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

number of running instances depending on the demand during

the particular periods of great shopping to those with low

shopping. Content delivery through Amazon CloudFront

helped to enhance the speeds of the websites' loading and

secure the websites from DDoS attacks through the

distribution of traffic across different edge locations.

Researchers also introduced an AI - based fraud identification

system that gave real - time analysis of the nature of

transactions. This system could employ machine learning

techniques to detect malicious activity, such as purchases,

failed login attempts, and transactions from risky areas. It was

designed in such a way that it could interact with the payment

gateway in such a way that it could highlight or even reject a

fraudulent transaction. The adopted preemptive measures

effectively minimized exposure to losses resulting from fraud.

Figure 9: AWS CloudFront

The respective inventory management system was also

improved by incorporating artificial intelligence. With the

help of the sales data, consumer preferences, and the cycles

of the year, the models developed by the company offered

solutions that would be beneficial to manage stock efficiently.

This minimized the instances of stockouts and overstock

conditions and enhanced the supply chain's facility. An

essential contribution of this recommendation system was

that it based the shopping experience on collaborative and

content - based filtering, thus raising customer satisfaction

and loyalty levels. In operational management, experts

utilized AWS CloudFormation to automate all the

instantiation and infrastructure setup processes (Felsen,

2017). They also set up the Infrastructure as Code (IaC)

approach, which helped to maintain the same level of

environment consistency and simplified the process of scaling

and modifying the system. AWS Lambda was used to perform

serverless computing for background activities like data

processing and integration with third - party services to

minimize operational overhead.

Table 1: Practical Data Security and Privacy for GDPR and CCPA

Data encryption measures were employed to meet the

requirements of legislation such as GDPR and CCPA

regarding data protection. AWS Key Management Service

encrypted PII and other sensitive information during transit

and storage. Data access and control were implemented with

the help of AWS Identity and Access Management (IAM) to

grant access to the data only to those authorized to do so

(Mohammed, 2019). Admittedly, security audits and

vulnerability assessments were performed continually to

ensure that risks were adequately addressed and that the

highest security and compliance measures were met.

Python

import boto3

from botocore. Exceptions import NoCredentialsError

># Instantiate AWS WAF client

waf_client = boto3. client ('wife)

># Web ACL Settings

response = waf_client. create_web_acl (

 Name='SecureEcommerceWebACL',

 MetricName='SecureEcommerceWebACLMetric',

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1926

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 DefaultAction={'Type': 'ALLOW'},

 Rules= [

 {

 'Action': {'Type': 'BLOCK'},

 'Priority': 1,

 'RuleId': 'SQLInjectionRule'

 },

 {

 'Action': {'Type': 'BLOCK'},

 'Priority': 2,

 'RuleId': 'XSSRule'

 }

],

 VisibilityConfig={

 'SampledRequestsEnabled': True,

 'CloudWatchMetricsEnabled': True,

 'MetricName': 'SecureEcommerceWebACLMetric'

 }

)

print (response)

Project 2: AI - Driven Vulnerability Management

I created an AI - driven vulnerability management system

with Amazon SageMaker and AWS Lambda services in

another project. Machine learning models were employed to

analyze the application code and the infrastructure

configurations to identify the threats and suggest the means of

mitigation. Continuous monitoring has also been part of the

system, with the help of AWS CloudWatch and AWS Config,

designed to monitor infrastructure changes and check for any

security violations in real - time (Mohammed, 2019). This

way, it was possible to detect new threats and threats' sources

and eliminate them immediately, drastically reducing

exposure time. The workflows incorporated automatic

alerting mechanisms to inform the security teams about the

critical vulnerabilities and recommend the action plan based

on the severity level and the possible consequences. AWS

Lambda integration aligned the vulnerability scans for

serverless execution, hence scalability and costs. AWS Step

Functions enabled easy management of large environments

and workflows necessary for vulnerability assessment and

remediation, which were conducted efficiently (Wadia et al.,

2019). Another machine learning approach used in the system

was natural language processing to parse security advisories,

and threat intelligence feeds to highlight the appropriate

vulnerabilities and interpret how they affect the particular

structure.

They used machine learning models in the system to train

from the historical vulnerability data, and the models'

performances were expected to gain accuracy over time. This

continuous learning process helped ensure that the

vulnerability management system continued progressing and

adapting to new types of threats. For integration, the system

included other commonly used issue - tracking systems like

Jira, where the status of remediation and other work could be

identified (Merten, 2017). Reporting was enhanced to ensure

stakeholders had an easier time viewing the security status of

their applications and other structures. These dashboards

included the count of identified vulnerabilities, remediation

status, and time to resolution, which provided quantitative

insights for decision - making and optimizing security

programs. By encompassing all aspects of the organization

and following a highly efficient process, the vulnerability

management process was made more resilient, flexible, and

overall effective in improving the organization's security

situation.

Expanded Technical Implementation

The AI - driven vulnerability management system was

developed from a well - architected AWS framework that

would enable the large - scale data processing and analysis

needed for the solution. It is designed as multiple AWS

services cooperating to provide real - time insights and

automatic responses. IAM was used to provide secure User

Authentication and Authorization where User authentication

was done using AWS IAM (Zahoor et al., 2017). IAM

policies were set to the finest level to ensure that only the

appropriate permissions were provided to the components to

reduce vulnerability. Additional measures in the form of

RBAC were adopted to enhance the access control provisions

and limit access to such data and functionalities to specific

roles. From the AWS services, Amazon S3 was employed to

store vulnerability data, application logs, and model artifacts

securely at scale. The data collected was also protected

through encryption to prevent unauthorized access during its

storage and transmission. In S3, lifecycle policies were

created to manage how data is transitioned into the archive or

deleted after specific time durations so that storage costs are

brought down and data retention compliance is maintained.

AWS Glue was mainly used for data integration, which helps

extract, transform, and load data from different sources into

the data warehouse. This made it possible to create the

extensive dataset needed for training and testing models for

inference. Amazon Athena offered the means of interactive

querying of the data stored in S3 for security analysts who can

run ad hoc data analyses and get insights without

implementing the data warehousing systems (Lebanon et al.,

2018). This serverless query service made it easier to search

for data and improved decision - making processes as they

were shortened. AWS Kinesis was incorporated to allow the

system to continuously and rapidly ingest data and produce

security intelligence for real - time streaming and processing

of data. This proved most valuable in the constant vigil for

security incidents and in identifying and reacting to threats as

and when they arose. This way, the architecture was highly

scalable, very secure and highly efficient, putting the AWS

services at the center of a highly effective vulnerability

management solution.

AWS SageMaker for Model Training and Inference

AWS SageMaker played a significant role in training and

hosting the ML models to enhance vulnerability detection.

The process began with data preprocessing, which involved

treating the stored historical vulnerability data, application

code, and configurations into an acceptable format for the

subsequent steps in the process. The compiled dataset was

divided into training and testing sets to ensure the model's

efficacy. Based on the results of experiments, several decision

tree algorithms, random forests, and neural networks were

considered to select the best model for vulnerability detection.

Before creating the model, the hyperparameters were adjusted

to achieve the best result. After that, the model was exported

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1927

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

to the SageMaker for real - time inference from the

SageMaker endpoint.

The following Python code snippet illustrates how

SageMaker was used to invoke the vulnerability detection

endpoint: The following Python code snippet illustrates how

SageMaker was used to invoke the vulnerability detection

endpoint:

Python

Copy code

import boto3

import json

Initialize SageMaker client

sagemaker_client = boto3. client ('PageMaker)

># Specify the parameters that would be fed into the ML

model

input_data = {

 "application_code": "def example_function (): \n pass",

 "infrastructure_config": ### Instance

``` 

resource "aws_instance" "example" { 

 Ami = "ami - 12345678" 

} 

``` 

}

># Use the SageMaker endpoint

response = sagemaker_client. invoke_endpoint (

 EndpointName='VulnerabilityDetectionEndpoint',

 ContentType='application/son,

 Body=json. dumps (input_data)

)

Parse the response

result = json. loads (response ['Body']. read ())

print (result)

AWS Lambda for Serverless Execution

The scanning processes were automated using AWS Lambda

functions to execute vulnerability scans. These serverless

functions were invoked on different occasions, for example,

when there were commits to the code base or infrastructure

changes or invoked at regular intervals to ensure the system

was current with the latest security scan results. Lambda's

ability to scale and remain affordable played a key role in

dealing with fluctuating loads without the extra step of

managing servers.

The following is a simplified example of how a Lambda

function could be set up to trigger vulnerability scans: The

following is a simplified example of how a Lambda function

could be set up to trigger vulnerability scans:

Python

Copy code

import boto3

import json

def lambda_handler (event, context):

 sagemaker_client = boto3. client ('sagemaker')

 ># Specify the parameters that would be fed into the ML

model

 input_data = {

 "application_code": event ['application_code'],

 "infrastructure_config": event ['infrastructure_config']

 }

 ># Use the SageMaker endpoint

 response = sagemaker_client. invoke_endpoint (

 EndpointName='VulnerabilityDetectionEndpoint',

 ContentType='application/son,

 Body=json. dumps (input_data)

)

 # Parse the response

 result = json. loads (response ['Body']. read ())

 return result

Continuous Monitoring and Alerts

AWS CloudWatch and AWS Config became invaluable in

continuous monitoring and maintaining compliance.

CloudWatch was enabled to monitor and record metrics and

set up alarms and auto - scaling on the changes in the AWS

environment. They were able to detect changes that could

pose vulnerabilities in the system through the inventory of

AWS resources and their configurations provided by AWS

Config. Notifications were set to be sent using AWS SNS and

AWS Lambda so that the security team would be notified

immediately of potential threats. It was crucial for this type of

real - time alerting so that any response and remediation could

be done quickly.

Real - Time Threat Intelligence

Thus, to improve the effectiveness of the system, real - time

threat intelligence was implemented using AWS services and

third - party APIs. Situational awareness feeds included new

threats, which were augmented, analyzed, and summarized

using NLP (Franke, & Brynielsson, 2014). This made it

possible for the system to address emerging vulnerabilities

quickly and ensure that the most effective data that would

make up the security measures were the most recent. These

threat intelligence feeds were supplemented with intelligence

gathered from dark web monitoring, social media analysis,

and research reports. This was possible because the

information provided by the comprehensive approach gave a

more general view of the existing threats. With the help of

machine learning algorithms incorporated into the system, it

would be possible to analyze the data and define the

tendencies and possible threats to penetrate the network and

improve the defense measures. Other services provided by

AWS, such as Amazon Guard Duty and Amazon Macie, were

also integrated to improve threat detection (Singh Virdi,

2018). The GuardDuty offered constant surveillance of

suspicious activity and unauthorized actions while the Macie

applied ML to identify, categorize, and secure potential

private information data. These integrations provided a more

practical approach to security where changes could be made

in response to the threats occurring in real - time. Predefined

automated procedures were cascaded to update firewall rules,

access control, and security policies to mitigate new attack

vectors and vulnerabilities that may arise from emerging

threats.

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1928

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Integration with DevOps Tools

As a result of integrating with DevOps tools such as Jira, the

overall vulnerability management workflows were made

efficient. When a particular weakness was noted, automated

tickets enabled tracking of the issue until the development

team fixed it. It also helped improve the integration between

security and development teams to ensure they work

collaboratively and that there is a culture of DevSecOps

within the organization.

Figure 10: Overview of DevSecOps

This proposed AI - driven vulnerability management system

designed using AWS services further demonstrated the use of

AI and ML coupled with cloud technologies to strengthen the

security of web applications. Using the latest techniques in

machine learning, constant surveillance, alerts, and real - time

threat detection, the system had all the features of an ideal

solution to prevent and deal with vulnerabilities. The robust

design and integration with DevOps tools made security

management a seamless and effective process that enhanced

the organization's security posture.

Python

import boto3

import json

Initialize SageMaker client

sagemaker_client = boto3. client ('PageMaker)

># Specify the parameters that would be fed into the ML

model

input_data = {

 "application_code": "def example_function (): \n pass",

 "infrastructure_config": ### Instance

``` 

resource "aws_instance" "example" { 

 Ami = "ami - 12345678" 

} 

``` 

}

># Use the SageMaker endpoint

response = sagemaker_client. invoke_endpoint (

 EndpointName='VulnerabilityDetectionEndpoint',

 ContentType='application/son,

 Body=json. dumps (input_data)

)

Parse the response

result = json. loads (response ['Body']. read ())

print (result)

2. Conclusion

Web application security is more of a continuous process than

a one - time solution and, therefore, needs constant attention.

Through input validation, proper authentication, proper

communication, regular patching, and proper coding

strategies, cyber threats can be avoided in an organization.

Furthermore, using artificial intelligence and machine

learning can improve security by providing robust threat

identification, risk assessment, and handling, as well as

automating several security features. By focusing on web

application security and incorporating AI/ML into security

strategies, organizations can protect their online resources,

retain customer confidence, and preserve their companies'

stability in the constantly escalating threat landscape. It is also

possible to use new technologies such as Blockchain and Zero

Trust Architecture (ZTA) to provide more protection.

Blockchain provides data authorities and decentralized

structures that enable only data logging, making it difficult for

the attacker to manipulate the data. Zero Trust Architecture

changes the concept of security from focusing on the

protection of the perimeter to requiring the validation of each

connection, making it less likely for threats within the

network to propagate and gain access to sensitive resources.

Integrating AWS services like AWS CloudTrail and AWS

Security Hub can significantly improve the assessment and

enforcement of monitoring and compliance. These services

offer a consolidated security perspective across various AWS

environments and facilitate continuous monitoring of security

events and compliance. Using AWS's secure platform and

integrating AI and ML tools, businesses can develop adaptive

and secure solutions that address emerging threats. Finally,

high - level security measures and proactive technologies

protect against cyber malice. It bears repeating that

organizations must adapt their security strategies and

implement new techniques to counter existing and emerging

threats. With the help of best practices, integration of AI/ML,

and the utilization of new technologies, different companies

can improve the security of the data and ensure the integrity

of their operations to develop trust among the users and the

members of the company. Such a commitment to security is

crucial for addressing the modern and diverse threats typical

of the contemporary world.

References

[1] Boivin, A. (2018). Defense against the real threat of ai

- based malware (Master's thesis, Utica College).

[2] Cakir, E. (2013). Single Sign - On: Risks and

Opportunities of Using SSO (Single Sign - On) in a

Complex System Environment with Focus on Overall

Security Aspects.

[3] Chio, C., & Freeman, D. (2018). Machine learning and

security: Protecting systems with data and algorithms.

" O'Reilly Media, Inc. ".

[4] Devi, B. K., & Subbulakshmi, T. (2017, December).

DDoS attack detection and mitigation techniques in

cloud computing environment. In 2017 International

Conference on Intelligent Sustainable Systems (ICISS)

(pp.512 - 517). IEEE.

[5] Felsen, N. (2017). Effective DevOps with AWS. Packt

Publishing Ltd.

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1929

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[6] Franke, U., & Brynielsson, J. (2014). Cyber situational

awareness–a systematic review of the literature.

Computers & security, 46, 18 - 31.

[7] Grammatikis, P. I. R., Sarigiannidis, P. G., &

Moscholios, I. D. (2019). Securing the Internet of

Things: Challenges, threats and solutions. Internet of

Things, 5, 41 - 70.

[8] Lebanon, G., El - Geish, M., Lebanon, G., & El - Geish,

M. (2018). Thoughts on System Design for Big Data.

Computing with Data: An Introduction to the Data

Industry, 495 - 541.

[9] Liang, F., Hatcher, W. G., Liao, W., Gao, W., & Yu, W.

(2019). Machine learning for security and the internet of

things: the good, the bad, and the ugly. Ieee Access, 7,

158126 - 158147.

[10] Manikanta, Y. V. N., & Sardana, A. (2012, August).

Protecting web applications from SQL injection attacks

by using framework and database firewall. In

Proceedings of the International Conference on

Advances in Computing, Communications and

Informatics (pp.609 - 613).

[11] Merten, T. (2017). Identification of Software Features

in Issue Tracking System Data (Doctoral dissertation).

[12] Mishra, A. (2019). Machine learning in the AWS cloud:

Add intelligence to applications with Amazon

Sagemaker and Amazon Rekognition. John Wiley &

Sons.

[13] Mohammed, I. A. (2019). Cloud identity and access

management–a model proposal. International Journal

of Innovations in Engineering Research and

Technology, 6 (10), 1 - 8.

[14] Naik, N., & Jenkins, P. (2017, May). Securing digital

identities in the cloud by selecting an apposite Federated

Identity Management from SAML, OAuth and OpenID

Connect. In 2017 11th International Conference on

Research Challenges in Information Science (RCIS)

(pp.163 - 174). IEEE.

[15] Ngwenya, S., & Futcher, L. (2019, July). A framework

for integrating secure coding principles into

undergraduate programming curricula. In Annual

Conference of the Southern African Computer

Lecturers' Association (pp.50 - 63). Cham: Springer

International Publishing.

[16] Patcha, A., & Park, J. M. (2007). An overview of

anomaly detection techniques: Existing solutions and

latest technological trends. Computer networks, 51 (12),

3448 - 3470.

[17] Rath, A., Spasic, B., Boucart, N., & Thiran, P. (2019).

Security pattern for cloud SaaS: From system and data

security to privacy case study in AWS and Azure.

Computers, 8 (2), 34.

[18] Shukla, S., & Jain, K. (2016). Rise of Identity and

Access Management with Microsoft Security.

[19] Singh Virdi, A. (2018). AWSLang: Probabilistic Threat

Modelling of the Amazon Web Services environment.

[20] Singh Virdi, A. (2018). AWSLang: Probabilistic Threat

Modelling of the Amazon Web Services environment.

[21] Wadia, Y., Udell, R., Chan, L., & Gupta, U. (2019).

Implementing AWS: Design, Build, and Manage your

Infrastructure: Leverage AWS features to build highly

secure, fault - tolerant, and scalable cloud

environments. Packt Publishing Ltd.

[22] Weichselbaum, L., Spagnuolo, M., Lekies, S., & Janc,

A. (2016, October). Csp is dead, long live csp! on the

insecurity of whitelists and the future of content security

policy. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security

(pp.1376 - 1387).

[23] Yin, Z., Li, Z., & Cao, Y. (2018). A web application

runtime application self - protection scheme against

script injection attacks. In Cloud Computing and

Security: 4th International Conference, ICCCS 2018,

Haikou, China, June 8 - 10, 2018, Revised Selected

Papers, Part II 4 (pp.566 - 577). Springer International

Publishing.

[24] Zahoor, E., Asma, Z., & Perrin, O. (2017). A formal

approach for the verification of AWS IAM access

control policies. In Service - Oriented and Cloud

Computing: 6th IFIP WG 2.14 European Conference,

ESOCC 2017, Oslo, Norway, September 27 - 29, 2017,

Proceedings 6 (pp.59 - 74). Springer International

Publishing.

Paper ID: SR24708022428 DOI: https://dx.doi.org/10.21275/SR24708022428 1930

https://www.ijsr.net/

