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Abstract: This study compares conventional network systems to SDN-based systems employing Open Flow and Pro GFE 

architectures. The performance comparison includes throughput, latency, and jitter across workloads. Implementing network 

systems on a simple PC platform and measuring performance is the study method. The results show that Pro GFE outperforms 

Open Flow and conventional network solutions in throughput. Complex tasks cause extra latency, affecting performance. The 

Pro GFE architecture has less jitter than Open Flow, indicating higher stability. These studies reveal SDN architectural 

performance variations and networking task appropriateness. 

 

Keywords: Conventional network systems, Software-Defined Networking (SDN), Open Flow, Pro GFE, throughput, latency, 

jitter, workload complexity, network performance 

 

1. Introduction 
 

a) Project Specification 

 

The Open Flow and Pro GFE models will be used to 

ponder conventional and SDN-based systems. The 

survey will test throughput, latency, and jitter on a 

fundamental PC stage under various workloads. 

 

b) Aim and Objectives 

 

Aim 

 

This study analyzes SDN-based and conventional 

network systems. The concentrate additionally thinks 

about Open Flow and Pro GFE SDN designs under 

various workloads. Understanding what network 

structures and workload intricacies mean for network 

performance is a definitive objective. 

 

Objectives: 

 

• To compare conventional with SDN-based network 

systems for throughput, latency, and jitter. 

• To assess performance differences between Open 

Flow and Pro GFE SDN architectures. 

• To evaluate the effect of workload complexity on 

SDN-based system performance. 

• To analyse findings to determine network 

performance aspects including architecture, 

workload, and platform. 

 

c) Research Question 

 

• How do Open Flow and Pro GFE SDN architectures 

perform differently in different workloads? 

• How does workload complexity affect SDN-based 

system performance? 

• Architecture, workload, and platform affect network 

performance? 

 

 

 

d) Research Rationale 

 

What is the issue? 

This study thinks about the performance of 

conventional network systems versus Software-

Defined Networking (SDN)- based systems, 

remarkably Open Flow and Pro GFE [1]. The 

concentrate likewise investigates what workloads mean 

for SDN-based framework performance. 

 

Why is the issue? 

 

Current networks are turning out to be more 

convoluted and requesting, making the issue 

significant. Conventional network systems might battle 

to full-fill these requirements, causing performance 

and versatility issues. SDN networking may improve 

performance and versatility by being more adaptable 

and programmable. Network design and optimization 

need understanding these methodologies' performance 

disparities. 

 

What is the issue now? 

 

SDN performance compared to conventional network 

systems must be understood. SDN is being adopted in 

telecommunications and data centres, hence its 

performance must be assessed under diverse 

workloads and scenarios [2]. This research addresses 

this need by examining SDN architecture performance 

and applicability for networking jobs. 

 

2. Literature Review 
 

a) Research background 

 

SDN provides industrial flexibility and scalability due 

to data plane separation, programmability, and 

centralized control [3-4]. Bacon, Floodlight, Maestro, 

NOX, POX, and RYU have been assessed using linear 

performance and throughput rates in most OpenFlow 

controller tests. In other studies, improved controllers 

with resolved defects were given. 
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NOX, Beacon, Maestro, NOx, and NOX-MT, an 

enhanced NOX controller, were tested by 

Tootoonchian, Gorbunov, Ganjali, Casado, and 

Sherwood [5]. The regulators might work better in an 

ideal network climate than recently expected. They 

planned Cbench to test OpenFlow switch copies for 

performance. NOX-MT, a multithreading derivative of 

NOX, outperforms NOX by 33 with better baseline 

performance and I/O batching. This study is outdated 

because ONOS, Floodlight, and OpenDaylight were 

not tested and newer controllers were produced. 

 

The latency and bandwidth performance of RYU, POX, 

ONOS, and OpenDaylight controllers were compared 

by Stancu, Halunga, Vulpe, Suciu, Fratu, and Popovici 

[7]. Controller performance was measured in a 16-host 

fixed four-level tree topology. ONOS has the most 

bandwidth and RYU the lowest end-to-end latency 

among these four controllers. The best controllers for 

goals or results were also introduced. Although POX 

performs badly compared to RYU, OpenDaylight, and 

ONOS controllers, it was chosen for its simplicity in 

configuration. Due to its static network architecture and 

limited performance characteristics across all test 

levels, this study cannot apply to controllers in other 

networks with varied priorities. 

 

Cbench latency and throughput were benchmarked for 

OpanDaylight and Floodlight [8]. Floodlight is more 

mature and industry- efficient than OpenDaylight. We 

proposed updating Cbench because it lacks data center 

traffic models for testing. This review, similar to other 

people, has short number of examined regulators (two), 

immateriality of the picked set of regulators to one 

another in capability, and fragmented boundaries and 

network factors to decide the best regulators. 

 

Floodlight and OpenDaylight controller latency and 

packet loss were evaluated in different network 

topologies and traffic loads by Shiva, Vajihe, and 

Manije [9]. Floodlight performs better in packet loss 

under severe loads, but OpenDaylight performs better 

in latency in tree-topologies with half-bandwidth traffic. 

The study's modest number of controllers, few 

comparative factors, and few network features may 

affect comparisons in more complex networks. 

 

Two unique and effective distributed OpenFlow 

controllers, OpenDaylight and ONOS, were tested by 

Darianian, Williamson, and Haque [10]. Cbench 

measured real-world and virtual controller throughput 

and latency. ONOS tops OpenDaylight in latency and 

throughput. This study lacks data center and cloud 

network test situations, where these two controllers are 

most frequent. The Python and Java controllers POX 

and Floodlight were analyzed by Fancy and 

Pushpaltha [11] as representative of all controllers in 

both languages. Some Mininet topologies were tested. 

The study only analyzed two controllers and few 

network variables, thus it may not cover all Python or 

Java controllers. 

 

 

b) Critical Assessment 

 

The study covers traditional and SDN-based system 

research, focusing on OpenFlow and ProGFE 

architectures [15-16]. It emphasizes the necessity of 

knowing throughput, latency, and jitter performance 

changes across workloads. Although the review 

provides a sound framework for the study, it lacks in- 

depth analysis of some performance variables and may 

benefit from more current investigations [17-18]. It 

establishes the importance of comparing network 

architectures and workload complexities on 

performance, identifies shortcomings for this study, 

and suggests further research. 

 

c) Linkage to Aim 

 

To evaluate conventional network systems against 

SDN-based architectures like OpenFlow and ProGFE. 

The study reviews existing studies to advance field 

knowledge. The literature review helps the study 

achieve its goal by explaining network performance 

measurements and parameters. It identifies research 

gaps that the study addresses and provides a theoretical 

framework for assessing and interpreting data. 

 

d) Implementation purpose 

 

The study compares conventional network systems to 

SDN-based systems employing OpenFlow and ProGFE 

designs. Implementing these systems on a simple PC 

platform allows the study to assess throughput, 

latency, and jitter under various workloads [19]. This 

practical application shows how network topologies 

and workload complexities affect network 

performance, helping to understand SDN technology 

and its potential benefits over traditional networking. 

 

e) Theoretical Framework 

 

The study compares SDN to traditional network 

technologies. SDN concentrates network asset control 

and programming by isolating the control and 

information planes. The study examines how 

OpenFlow and ProGFE SDN designs affect network 

performance measures like throughput, latency, and 

jitter [20-21]. The study evaluates these measures to 

discover how SDN architectures differ from traditional 

networking and how they may improve network 

performance. 

 

f) Literature Gap 

 

The study addresses the lack of extensive comparisons 

between conventional network systems and Software-

Defined Networking (SDN)-based systems, focusing 

on OpenFlow and ProGFE SDN architectural 

performance. There is already research on SDN and its 

benefits, but more empirical studies that explicitly 

compare network designs under different workloads 

are needed. 
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3. Methodology 
 

a) Research philosophy 

 

Most traditional and SDN network systems use 

powerful platforms. We executed network systems on 

a straightforward PC stage to look at the performance 

of conventional and SDN- based network systems and 

the two SDN designs portrayed previously. We 

expected that distinctions in basic stage performance 

show contrasts in devoted network framework stage 

performance. We tested the performance differences on 

a powerful network-processor platform and a simple 

PC platform to confirm this notion. 

 

 
Figure 1: Design of ProGFE 

 

b) Research approach 

 

The study used a simple PC platform to compare the 

performance of conventional, Software-Defined 

Networking (SDN), OpenFlow, and ProGFE SDN 

systems. This arrangement was cheap and easy to 

replicate. The systems ran on PCs, with normal tasks 

executing directly and SDN tasks using their 

architectures. To measure throughput, latency, and 

jitter, several workloads were examined. Results were 

studied to determine network architecture and 

workload complexity effects. Overall, the study sought 

to understand SDN architecture performance and 

applicability for different networking activities. 

 

c) Research design 

 

This study compares conventional network systems to 

Software-Defined Networking (SDN)-based systems, 

concentrating on OpenFlow and ProGFE SDN 

designs. The study will quantify throughput, latency, 

and jitter performance differences. Purposive sampling 

is used to choose platforms and configurations that 

accurately represent conventional and SDN-based 

systems in this study. Throughput, delay, and jitter are 

measured using iperf, synthetic frames, and 

timestamps. 

 

 

d) Data Analysis and Collection Method 

 

We thought about the performance of different 

networking errands between SDN (Open Flow and Pro 

GFE) in Linux's client space, non- SDN (committed 

application that executes networking undertakings 

straightforwardly, e.g., unadulterated Linux sending) in 

the client space (for correlation), and portion space (to 

investigate PC potential). Linux Pro GFE and Open 

Flow delicate switch v1.0 stable were used. 

 

 
Figure 2: Steps of Data Collection Method 

 

VLAN labeling was more confounded for a FE than IP 

steering. We disregarded backhanded performance 

advantages of SDN (e.g., less network systems, 

quicker innovation reception) and focused on "crude" 

performance estimations to assess performance. This 

incorporates throughput, postponement, and jitter. 

Iperf was utilized to make a TCP/IP flow with TCP 

window widths from 5 Kbytes to 10 Mbytes to test 

throughput. Engineered outlines with various casing 

widths and a timestamp were utilized to compute 

latency. Jitte, or Bundle Postpone Variety (PDV), was 

additionally investigated. Two SDN-based span 

applications (straightforward and confounded span 

executions) and a committed, local extension 

application were looked at on superior performance 

network processor stages. These platforms used 

EZChips NP-2 Network Processor. A simple Ethernet 

bridge configuration and a complicated bridge 

configuration with over 40 extra workloads were tested. 

 

e) Experimental testbed 

 

The SDNs and committed systems were executed on a 

2.4 GHz Intel Core2Duo e6600 central processor, 2 

GB of DDR2 memory, and three Intel 82572EI Gigabit 

NICs in the unit under test (UUT). A basic source-and-

sink proving ground with two normal computers 

associated by means of the UUT PC was utilized for 

throughput testing. The two laptops laid out a TCP/IP 

flow utilizing iperf, and the UUT exchanged or steered 

between them in view of workload. A committed, 

implanted MPC8360 microprocessor produced and got 

outlines from the UUT and estimated deferral and jitter 

in microseconds. 
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4. Result 
 

We look at the crude performance of PC- based bit space 

and client space executions of unadulterated Linux 

sending, the client space Linux Pro GFE, and the clients 

pace Open Flow delicate switch, and a fundamental 

extension and the Pro GFE for the network processor. 

 

a) Critical Analysis 

 

SDN and native implementations of bridging on 

network processor. 

 

Table 1 looks at the typical latency of a fundamental, 

local Ethernet span executed by committed software 

on the network processor (explained span in the 

figures) and two NP- based ProGFE spans, one plain 

and one complex, utilizing NP-2 network processor. 

The ProGFE has around 10 microseconds of above 

when designed with further developed capabilities. 

The bridge implementation did not reduce throughput 

because both NP kinds worked at wire speed (1 Gbps 

was tested). The straightforward version of ProGFE 

bridging introduced 5 microseconds of latency, whereas 

the sophisticated implementation added 5 

microseconds, on average, in both NP kinds. 

 

Table 1: NP2 ProGFE bridging time 
Frame NP2 NP2 NP2 

Size Bridge ProGFE 

Plain 

ProGFE 

complex 

100 2 4 9 

200 3 4 9 

300 5 6 11 

400 8 9 14 

500 10 12 15 

600 15 16 16 

700 18 19 18 

800 20 21 20 

900 24 22 22 

1000 28 26 26 

1100 33 28 30 

1200 34 30 36 

1300 36 33 40 

1400 40 34 41 

1500 42 36 42 

 

Throughput- PC platform 

 

Table 2 compares the throughput of PC- based SDN 

systems versus pure Linux forwarding for switching, 

routing, and VLAN workloads). 

 

Table 2: Throughput 
Throughput / T C P  

window size 
0.005 0.05 0.5 5 

Routing 

Direct 

Connection 
150 200 350 500 

Linux Kernel 

Space 
120 300 450 550 

Linux user- 

space 
110 230 430 500 

Linux 

ProGFE 
100 250 300 400 

Openflow 

v1.0 
100 160 260 300 

VLAN Linux user- 150 200 550 600 

 

Both part space and client space executions of 

unadulterated Linux sending were estimated. SDN 

executions are Linux ProFGE and OpenFlow v1.0, and 

direct associations among source and sink laptops 

without the UUT are immediate association. ProGFE is 

the more complex SDN engineering, yet it outflanks 

OpenFlow in throughput for most edge sizes. 

Additionally, the kernel-space Linux forwarding solution 

outperforms the tested SDNs' user-space 

implementations. These results show that SDN 

architecture complexity does not necessarily affect 

implementation performance, but workload complexity 

does. 

 

Latency - PC platform 

 

In Table 3, routing and VLAN tagging processing times 

(latency) are compared. Figures 5 and 8 show that 

ProGFE has somewhat diminished latency for steering 

and comparative latency to OpenFlow for VLAN 

labeling. 

 

Table 3: Latency 
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Latency 500 1000 1500 2000 

Latency 

– 

Routing 

Open Flow 1.0 83 86 89 90 

Linux ProGFE 82 85 88 89 

Linux user space 63 66 67 69 

Linux kernel space 42 45 46 48 

 Loop back 15 16 17 20 

Latency - VLAN Open Flow 1.0 60 62 65 70 

tagging Linux ProGFE 89 102 110 130 

 Linux user space 90 103 111 131 

 

Jitter (Packet platform: 

 

Delay Variation) PC 

 

The study identified performance differences between 

conventional network systems, Software-Defined 

Networking (SDN)-based systems, and OpenFlow and 

ProGFE SDN designs. Most SDN-based systems, 

notably ProGFE ones, offer better throughput ProGFE 

managed enormous data volumes efficiently under 

intense workloads [22-24]. Both SDN architectures 

have similar IP routing latency to conventional systems 

for simple workloads. ProGFE was faster than 

OpenFlow and other solutions for complicated tasks 

like VLAN tagging. SDN-based systems, especially 

ProGFE installations, have decreased jitter. 

 

5. Conclusion 
 

We analyzed OpenFlow and ProGFE's performance in 

view of their complexity, Table 4 displays steering and 

VLAN labeling jitter. Client space ProGFE scores are 

practically basically as great as portion space Linux, 

while OpenFlow PDV values are high for the two 

workloads. The findings also suggest that workload 

complexity does not significantly effect jitter. OpenFlow 

has considerable jitter, which may explain why its 

throughput is lower than the ProGFE despite similar 

latency figures. TCP timeouts due to large delay values 

degrade TCP protocol rate and throughput. 

 

Table 4: Jitter Routing 

Fra me Size Ope n flow 1.0 Linux ProG EF 
Linu x user 

space 

Linu x Kern el 

space 
Loopba ck 

200 62 12 12 12 0 

400 60 13 12 12 1 

600 61 14 12 12 2 

800 62 12 12 12 1 

1000 63 12 12 12 2 

1200 63 15 12 12 1 

1400 65 14 12 12 0 

 

6. Findings and Discussion 
 

Versatility, and prospective usefulness and capacities 

in this article. We found that SDN adaptability 

diminishes crude performance and adds above for 

muddled usefulness. The authors felt their 

implementations were improper, however their 

conclusion contradicts [25]. For switching, routing, 

and VLAN tagging, ProGFE outperformed OpenFlow 

in throughput for most frame sizes and had similar 

latency. We also found that workload complexity 

influences SDN-based system throughput and latency, 

supporting [26]. OpenFlow has significantly more 

jitter than ProGFE (unaffected by task complexity), 

bringing about second-rate throughput in spite of 

comparable latency. The outcomes likewise propose 

that a more perplexing SDN with more noteworthy 

adaptability, usefulness, and limits doesn't necessarily 

in all cases debase performance [26]. Performance 

relies upon SDN execution. Performance differences 

will be bigger in workloads that need control plane 

involvement in the simpler SDN, favouring the more 

complicated SDN. 

 

 

 

7. Research Recommendations 
 

Software-Defined Networking (SDN) designs, 

particularly Pro GFE-based ones, can improve network 

performance, according to the study. Comparatively, 

SDN-based systems, especially Pro GFE, have higher 

throughput, lower latency, and lower jitter. 

Organizations should consider networking job 

complexity when choosing SDN architecture, as Pro 

GFE performed better. For optimal performance and 

efficiency, SDN-based systems should be monitored 

and optimized [27-30]. Managing and optimizing 

SDN-based systems requires IT team training. SDN-

based systems, particularly the Pro GFE architecture, 

need more research on scalability and realistic 

application. 

 

8. Future Work 
 

SDN designs are studied in several important areas to 

improve our understanding and use of them. To assess 

their efficacy in bigger and more complicated network 

contexts, SDN- based systems, notably the ProGFE 

architecture, need additional scalability research. 

Finally, SDN-based system integration and 

management in heterogeneous network settings require 
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study on standardization and interoperability. 
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