
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Agile Development and SOLID Principles

Akshay Chandrachood

Irving, Texas, USA

Email: akshay.chandrachood[at]gmail.com

Abstract: Building the right systems is essential for today’s dynamic business environment that features rapid change. This paper

explains how to unite Agile development directions and SOLID principles into one goal. It explores the core principles of Agile and

SOLID, known as software design principles, and applies them in a cohesive manner to promote higher flexibility and increased

extensibility in software development. Using real - world examples, including case studies of e - commerce platforms, is provided to

illustrate key concepts. Furthermore, the paper discusses limitations and goals and provides insight into future trends.

Keywords: Agile development, SOLID principles, software flexibility, e-commerce platforms, future trends

1. Introduction

The architecture of programmed systems must be flexible to

cope with ever - changing business demand driven by

customer needs, market factors and technological changes to

try not to predetermine everything at the beginning. Tightly

designed, innovative, and universal architectures can work

during specific periods but run outdated the moment it

begins swiftly, leading to technical debt, increasing costs,

and reducing the competitive edge. Adaptive software is

ventured to go with the supple merging of new features but

certainly carries along future changes that will add lasting

benefits and value in the long run. Maintainable, easily

comprehensible systems will allow future generations to

come to the system and make any necessary enhancements

or alterations at a minimum cost of effort and risk [1].

Hence, by doing so, organizations develop future - proof

software, have faster time - to - market, and generate a

substantial ROI by satisfying the customers' needs from the

beginning. This write - up shall aid in the comprehension of

Agile methodologies, including their principles and

advantages, SOLID principles, their coherence with Agile

and benefits of implementing combinations, and finally, an

example, embracement challenges, and future development.

Agile Development Methodologies –

The high - level agility of software development has been

caused by methodologies like Scrum and XP, which are

widely recognized and are now in top places in the history of

software development. Simultaneously, the base principle of

methods is in specifying iterations and increments. This core

concept applies when it comes, for the most part, to the

flexibility in teams and their ability to be adaptable quickly

to any change. Agile teams do not rely on a plan that gives a

start - to - finish linear arrangement. Still, they involve

timeboxes at the beginning of every iteration or sprint to

provide working software that is progressively fine - tuned

from customer feedback [2]. The whole process is cyclical,

in which every output of every inflection loop offers the

ground for the second one. The main attractions are the high

level of flexibility between the customer's needs and the

changes in the product, ensuring an excellent level of

repeatability and turning the first iteration into one more. A

significant key guiding our approach is user alignment,

through which products continue to grow, built upon a

collaboration between the end user and the product team.

Core Principles of Agile –

• Iterative and incremental delivery

• Customer collaboration

• Responding to change by following a plan

• Continuous integration and delivery

• Self - organizing cross - functional teams

• Sustainable development pace

Benefits of Agile –

Key benefits of agile methodologies include increased

flexibility and responsiveness, resulting from the course

correction along the way, feedback with the evolution of

needs, and early and frequent delivery of working software

to the stakeholders' satisfaction. The associated benefits are

the sharing of knowledge among team members, the

productivity of the team, and improved collaborative

aspects.

Integration of SOLID Principles in Agile Development –

The SOLID principles are a collection of five software

design principles created to make software designs more

understandable, flexible, and maintainable.

• Single Responsibility Principle (SRP): A class should

have only one reason to change, meaning it should have

only one responsibility or job. This principle promotes

high cohesion and low coupling.

• Open/Closed Principle (OCP): Software entities such as

claasess, modules, functions, etc. should be open for

extension but closed for modification, meaning you

should be able to extend the behavior of a class or in

other words, add new functionalities, without altering its

existing code [2].

• Liskov Substitution Principle (LSP): Objects of a

superclass should be replaceable with objects of its

subclasses without affecting the correctness of the

program [2].

• Interface Segregation Principle (ISP): Clients should not

be forced to depend on interfaces they do not use,

promoting modular and focused interfaces [2].

• Dependency Inversion Principle (DIP): High - level

modules should not depend on low - level modules; both

should depend on abstractions, decoupling systems from

volatile details [2].

Synergies with Agile and Its Benefits –

SOLID principles promote modular, extensible, and testable

code designs, aligning with Agile's emphasis on adaptability

Paper ID: SR24522142834 DOI: https://dx.doi.org/10.21275/SR24522142834 1672

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:akshay.chandrachood@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and maintainability. Agile's iterative approach facilitates the

gradual application of SOLID principles throughout the

development lifecycle, enabling continuous refactoring and

improvement.

The integration of Agile and SOLID principles offers several

benefits. It increases code quality and maintainability by

fostering modular, testable, and extensible architectures.

Technical debt and rework are reduced as systems are

designed for change from the outset [3]. Testability and

extensibility are improved, enabling efficient addition of

new features and functionality. As the last piece, team

collaboration and knowledge sharing increase using

designed together principles and faster development

processes.

Case Study: E - commerce Platform –

The platform should be cloud - based to accommodate the

increasing demands and ensure the business meets emerging

requirements. The project team utilized an Agile

methodology that featured an iterative and interactive

character with customers as stakeholders in this process,

allowing the team to respond swiftly to changing market

demands. On the contrary, they applied SOLID principles

such as SRP (Single Responsibility Principle) and OCP

(Open/Closed Principle) in designing essential components,

allowing them to have a component that is not only modular

and extensible but can also be added to [5].

The cross - pollination of Agile's flexible methods and

SOLID's modular features made it possible to deliver an e -

commerce website that is responsive, scalable, and future -

looking. In further creating new features, they may more

adequately use fewer development and operational expenses

with much shorter durations. Code quality and team

productivity were enhanced, speeding up the delivery period

[5].

Although no specific figures are evident, the team's effective

utilization of Agile and SOLID methods has allowed the

team to deal with changing requirements quickly, deliver

and receive value incrementally, and shape a flexible

technical design that can continuously evolve without

incurring significant technical debt [5].

2. Challenges and Limitations

1) Adoption and Cultural Shift – The most visible culture

change that usually occurs is the one connected with the

elimination of the legacy and downshift to the lightweight

Agile methodologies and SOLID principles to the

organization. This process, which probably will be quite a

challenge for organizations where all the roads lead back to

waterfall methodologies or silos, is going to be quite a

challenge for them. Moreover, incorporating the SOLID

principles requires designers to adapt a different modeling

approach and programmers to switch to new coding norms,

further showing the reluctance of programmers loyal to the

old practices. These cultural impediments can be overcome

by strong leadership and training and a readiness to accept

and go through what this change is about at all levels of the

organization.

2) Skill and Knowledge Gap – Agile practice and SOLID

principle application have to be championed by an expert

team; otherwise, it is a big hurdle. Practices can't be adopted

without appropriate training and experience. The nuances of

Agile methodology practice are poorly understood, making

the teams inefficient in their implementation [4]. Similarly,

non - adoption of SOLID and poor understanding can lead to

poor design decisions, undermining code maintainability and

extensibility. Organizations should invest in full - fledged

training programs and knowledge - sharing initiatives to

bridge this gap. Experienced practitioners may also be hired,

or external consultants may be engaged to expedite the

learning curve.

3) Legacy Systems – The problem of occasionally

establishing an appropriate sequence for implementing the

new SOLID - compliant block containing mostly old,

obsolete elements arises. This problem happens when a

legacy code is not refactored, and it becomes difficult to

extend the code and make it more maintainable according to

the dependency inversion principle or other patterns. In this

situation, upgrading the technologies to SOLID may be

complex and time - consuming and might lead to rework

being done if not done at the right time and place [6].

Integrating the two systems may be difficult because the

legacy system includes old technologies and models based

on older frameworks. For a legacy system, integration means

the gradual, prudent task of migrating on incremental routes

and colossal testing.

3. Future Directions

It can be safely assumed that Agile is bound to be adopted

by more and more organizations in the future and escalated

research efforts can be expected towards these practices so

that the emergent challenges with Agile at scale can be

addressed and kept consistent with business objectives in

large corporations. Future work could attempt to provide

domain - specific Agile frameworks that are more

conformant for specific industries and companies.

At this intersection between SOLID and Agile, the growing

complexity of software systems will foster research in more

and better ways of applying SOLID principles consistently

in Agile development workflows since these principles are

currently located in classic waterfall approaches. In other

words, the call for new techniques and tools that apply

SOLID during Agile development without losing its iterative

and collaborative nature is coming. These parts can be

addressed to pave the way for sustainable and more robust

software that continuously includes the best practices

brought about by SOLID and Agile. This way, these

practices can remain at the leading edge of development

practice for decades.

4. Conclusion

This highlights combining the Agile approach with SOLID

object - oriented principles so that systems can be responsive

and adjustable for making software changes and

maintenance. By connecting the organizations, integration

helps them deal with new needs that require flexibility and a

focus on the customer. It also keeps the system cohesive,

Paper ID: SR24522142834 DOI: https://dx.doi.org/10.21275/SR24522142834 1673

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

modular, and expandable while staying true to the SOLID

principles for writing high - quality code that can be tested

and scaled. This paper delves into the case study and sorts

out the benefits of this approach, including a drastic

reduction in cost and time of development, code abstraction,

and building team productivity.

References

[1] Manifesto, A. (2001). Manifesto for agile software

development.

[2] Martin, R. C. (2000). Design principles and design

patterns. Object Mentor, 1 (34), 597.

[3] Rasmusson, J. (2010). The agile samurai: How agile

masters deliver great software. The Agile Samurai, 1 -

264.

[4] Ambler, S. W., & Lines, M. (2012). Disciplined agile

delivery: A practitioner's guide to agile software

delivery in the enterprise. IBM press.

[5] Stellman, A., & Greene, J. (2014). Learning agile:

Understanding scrum, XP, lean, and kanban. " O'Reilly

Media, Inc. ".

[6] Fowler, M. (2018). Refactoring: improving the design

of existing code. Addison - Wesley Professional.

Paper ID: SR24522142834 DOI: https://dx.doi.org/10.21275/SR24522142834 1674

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

