
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Chaos Engineering for Building Resilient

Distributed Systems

Venkata Naga Sai Kiran Challa

Email: saikirancvn[at]gmail.com

Abstract: Chaos Engineering is an advanced methodology used to ensure the reliability and fault tolerance of distributed systems. By

deliberately introducing faults, it tests how systems behave under real-world conditions, thereby identifying vulnerabilities that traditional

testing may miss. This proactive approach helps organizations like Netflix, Amazon, Google, and Microsoft to maintain high availability

of their services. Integrating Machine Learning ML into Chaos Engineering further enhances its effectiveness by predicting anomalies,

automating experiments, and improving observability. This combined strategy promotes a culture of continuous learning and resilience,

crucial for modern, complex systems.

Keywords: Chaos Engineering, fault tolerance, distributed systems, Machine Learning, resilience

1. Introduction

As technology advances today, distributed systems'

dependability and fault tolerance are the key elements. This

is especially so as more businesses depend on such systems

to provide crucial services to customers. As such, their

availability has to be maintained during failures. That is

where Chaos Engineering comes into the picture as one of the

critical practices for organizations. Chaos Engineering is the

methodology of the live experiment on the distributed system

to restore confidence in the solution in case of perturbation in

production. It is an intentional process of introducing faults

into a system in order to determine its behavior and possible

issues when they have yet to surface in actual situations. The

main goal of Chaos Engineering is to foster change readiness,

that is, the ability to promptly restore a system to operations

after interruption.

Several notions form the basis for Chaos Engineering. System

recovery ability is defined as the ability of a system to restart

and resume functioning after a failure. The process of Chaos

Engineering also includes the usage of a fault injection

technique, which means errors or failures are introduced

deliberately to observe the system's behavior. Another is

observability, which relates to the degree to which the outputs

of a system can assess the state of a system. The blast radius

defines the range of a failure's influence on a system. Thus,

by controlling the blast radius, the engineers can regulate the

threats connected to Chaos Engineering. Conventional

approaches to testing, established by evaluating input and

output to see if a system meets specific requirements during

unit, integration, and end-to-end tests, need to address the

requirements of conditions in an actual environment. Chaos

Engineering, on the other hand, focuses on how a system

behaves in such a state, the purpose being to identify any

vulnerabilities and shortcomings. This augments the

conventional ways of testing to ensure that all the aspects not

usually covered or reached during the tests are tested, thus

improving the strength of the developed system.

Figure 1: Fault-Tolerance

Modern Chaos Engineering has become integrated with the

modern industry, and several legends like Netflix, Amazon,

Google, and even Microsoft use it to ensure the deterministic

nature of their distributed systems. Some examples of

companies that use the concept are Netflix, which used Chaos

Monkey, which shut down instances randomly to test

resilience. Amazon uses Chaos Engineering to strengthen its

AWS frameworks, whereas Google and Microsoft utilize the

method of fault injection to ensure their cloud services'

reliability. However, if Machine Learning (ML) is introduced

into Chaos Engineering, the latter's effectiveness will be

boosted. This means an ML model can actively spot

anomalies in a system and even forecast failure areas and

what can be done to prevent them. Activities such as Anomaly

detection, Predictive Analytics, and Automated

experimentation using reinforcement learning are the

techniques that help improve the Chaos Engineering process.

In addition, through ML, factors that may have caused

failures can be isolated, increasing the chances of

rectification.

Practicing chaos engineering is a complicated process that

needs to be well-planned and carried out. Finding ways to

reduce risk includes beginning with small-scale experiments

C. But, perhaps more importantly, the actual execution and

analysis of such experiments to be automated can reduce the

difficulties of the process. The use of Chaos Engineering in

the CI/CD pipeline means that concern for the fault tolerance

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1678

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of the applications runs into the CI/CD. The optimization and

enlargement of the experiments based on the findings that

have been made can result in an improved and smoothly

evolving innovation system. Chaos Engineering is about

changing how resiliency is handled and thinking from the

system's perspective. Preventing such failures in advance

guarantees that distributed systems can be comparable to

pandemonium and ready for different, often unexpected

conditions. When Chaos Engineering is enhanced with ML

techniques, the virtues go beyond improving the system's

reliability; it also encourages continuous training that would

help the growth of highly robust and resilient distributed

structures.

Key Concepts

Chaos Engineering can be categorized into several

elementary notions that frame this practice and are essential

for strengthening distributed systems. This paper will present

other concepts: Resilience, Fault Injection, Observability, and

Blast Radius.

Resilience

Reliability is one characteristic of a distributed system, which

means the capability of a distributed system to recover from

failures and resume normal operations. Resilience in the

context of Chaos Engineering is not merely stabilizing and

returning to normal functioning after a failure but also

ensuring systems can operate at an acceptable level of service

during failure. Reliable systems are developed to cope with

misfortunes, such as equipment breakdowns, software

glitches, network problems, and overloads. Chaos

Engineering, in turn, approaches the issue through the idea of

resilience and makes an effort to guarantee that failures turn

into manageable issues regarding the usage of the

infrastructure among end-users. This entails the incorporation

of backup, fault tolerance, and failover to ensure that

downtime and data loss are kept at a minimum. Among other

things, some resilient structures are equipped with self-

healing that is useful in diagnosing and correcting the

problem, hence the increased dependability.

Figure 2: Resilience in distributed systems

Fault Injection

Fault injection is a methodology employed to introduce the

system so that its response can be assessed. This method is

critical to Chaos Engineering since it enables engineers to

introduce various typical conditions in deployment

environments and evaluate the system’s performance based

on the results. Several fault injection types depend on the

implementation scenario, including latency injection, packet

drop injection, process kill injection, and data corruption

injection. Systematically introducing such faults enables the

engineers to understand the various response mechanisms of

the system while at the same time exposing some of the

hitherto unnoticed or concealed weaknesses that other

standard testing techniques cannot determine. Fault injection

is set to induce a form of systematic perturbation in the

system, and this is a controlled environment to enable the

findings of different failures and to come up with

corresponding mitigation measures. By performing numerous

fault injection exercises, one can gain confidence in the

reliability of an organization’s system and increase the

chances of sustaining services in the occurrence of faults.

Observability

Observability is the extent to which one can monitor what

internal states of the system are in what circumstances by

looking at the system’s outputs. In other words, it is the

capability of observing and making sense of the activity

within a system, given the output of logs, metrics, or traces.

One of the peculiarities of Chaos Engineering as a practice is

that it highly values observability because such a perspective

allows designers to investigate system states and diagnose

problems accurately. High observability enables watching for

abnormal behavior, the determination of slow-moving

components, and comprehending the relations between

system sub-areas. Observability plays a critical role, and it

requires good monitoring and logging techniques in addition

to distributed tracing to handle the requests across the

services. In this way, there is better situational awareness of

problems that occur during the execution of an activity within

an organization and reduce the level of negative impact on

users where possible. Furthermore, it is highly beneficial in

driving improvement as it allows one to receive feedback on

the effectiveness of the approaches used in fault injection and

resilience techniques.

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1679

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Observability

Blast Radius

Blast Radius is the potential variety of a failure’s influence on

a system. Chaos Engineering originated from software

development, and controlling the blast radius is the primary

objective of this methodology to avoid creating several

problems when conducting the experiments. Blast radius is

based on the boundaries of the separate parts that can be

influenced by failure, which means services, users, other

systems, and hardware. This means that the management of

the blast radius is defined by identifying and encapsulating

the parts or services that would be introduced to the taxing

fault, in this way controlling the amount of harm that could

occur. By extending the blast radius only a little, engineers

can experiment without blowing the whole thing up while still

getting information. Indeed, management of blast radius also

has a planning aspect that includes aspects like enlisting

guards and rollback mechanisms to contain the impact of the

blast when it occurs. This way, the organizations can

gradually push the working and boundaries of experiments on

the uplift system. They can experiment to check the strength

of their system gradually.

These key concepts, which are Resilience, Fault Injection,

Observability, and Blast Radius, should be well understood

and embraced to enhance the conduct of Chaos Engineering.

By emphasizing the probability of failure, addressing the

difficulties of protecting and restoring the organization’s

systems is possible. Fault injection is a way to actively search

for vulnerabilities, while observability is the ability to analyze

and fix occurring problems. Risk management also

guarantees the absence of negative impacts on the A/B testing

process and might be defined as the practice of keeping the

damage zone under control. These concepts help

organizations construct robust and reliable distributed

systems to get more reliable results even in bad conditions.

Figure 4: building_resilience_chaos_engineering

Process

In practice, Chaos Engineering has to be applied in a

systematized way in distributed systems while effectively

conducting experiments. This approach involves five key

steps, which include a steady state is characterized as the

constant state where the system is already at equilibrium;

hypothesis steady state as assuming that the system has

already reached stability; Introduce Variable as bringing a

variable into the system; and analyzing how it affects the

system's equilibrium, Analyze Results as evaluating the

outcome of the changes introduced and making applicable

conclusions, improve system emphasizing the changes made

to the system in order to maximize its efficiency.

Define Steady State

The first approach in modeling is to identify the system's

steady state, which may be considered the state of the system

when in the most normal state of performance. This is

established based on the assessment of KPIs, which include

throughput, latency, and error rate. These SMs will form the

starting point for analysis and any variance observed when

conducting chaos experiments. For instance, throughput can

be expressed as the number of transactions per second,

latency as time to process a request, and error rates as the ratio

of failed transactions. In this regard, Basiri et al. (2016) have

made an assertion that there is a need for an enhanced

understanding of the said metrics to identify anomalies and

evaluate the effects of injected faults.

Hypothesize Steady State

When the steady state is determined, the next step is to assume

how the system is supposed to behave under certain

conditions. This entails developing a hypothesis concerning

the behavior when different failures or stressors are

incorporated. These hypotheses are based on the architecture

of the system, the data that has been collected until now, and

the similar type of system with which experience has been

gained. For instance, a hypothesis may be worded such that

when there is network latency, the system's response time will

be higher but should not surpass a given limit. These

hypotheses are developed to also aid in defining desirable

objectives or expectations regarding the deliverables of the

chaos experiments. The paper by Basiri et al. (2016)

highlights that it is possible to make good use of historical

data and architectural knowledge to set hypotheses that would

be real and feasible .

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1680

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Introduce Variable

Once hypotheses have been established, the subsequent stage

initiates variables through failure or unfavorable situations.

This can be made through fault injection, whereby some

faults, such as network, server, or disk, are incorporated into

the system deliberately. The idea is to test the system's

response to the above faults and see whether it can hold its

steady state position. For instance, Netflix uses the Chaos

Monkey tool, which randomly kills instances across their

production line, to determine how the system will respond to

such disruptions. Introducing controlled elements of disorder

makes it possible for engineers to identify some of the

existing vulnerabilities so that efforts can be made to

strengthen the necessary points. This step has a technical

term, and its execution must be done with maximum caution

not to destabilize the properly functioning services.

Analyze Results

The second step to be taken in order to derive the value of the

variables used is to assess the results and contrast the actual

behavior with the stability state. This entails assessing data

collected on the system performance during the chaos

experiment about the baseline KPIs. Reducing the difference

in the system from the steady state demonstrates that the

introduced faults have opened up vulnerabilities. For

example, if the error rates or the latency level exceeded the

organization's established standards, it would call for more

research. Anderson et al. (2017) also states that logging and

analysis at a high level of detail must be employed to assess

the effect of faults and localize the sources of departures.

Improve System

The last task within the process is adapting the gathered

knowledge to enhance the system resistance. This entails

alterations to the system's structure, settings, or application to

rectify/remove the vulnerabilities as observed. For instance,

if an essentially specific service is under high load, engineers

should improve load balancing or boost resources for that

specific service. Further, with the help of chaos

experimentation, improvements in identifying better fault-

tolerance mechanisms and recovery procedures may be made.

From such an analysis, Allspaw (2009) observes that it is

possible to achieve constant improvement through learning

from failure to enhance a system's resilience. It is vital to note

that these dissections can be paralleled to experiments to

improve such systems as organizations under consideration

proceed with the real challenges that define their disruptions.

The Chaos Engineering process can, therefore, be depicted as

consisting of the following: The advantages for the

organizations to define the steady state, hypothesize the

expected behavior, introduce the controlled variables, analyze

the results, and make the informed improvements are the

ability to spot the possible failure areas and prevent them

systematically. It is beneficial to improve the system and

creates allure to creating and surviving mechanistic and

evolutionary processes. These steps are essential for

constructing highly available and reliable distributed systems

that can withstand the specific challenges of natural

environments.

Figure 5: Process of Chaos Engineering

Comparison with Traditional Interfaces

When it concerns software development and system

maintenance, testing methodologies occupy the central

position in guaranteeing the relative reliability of

applications. Conventional testing uses unit, integration, and

end-to-end test categorisation, the usual method. However,

chaos engineering is different as it is based on a proactive

approach, which helps discover system behavior in actual

conditions. This section compares the traditional testing

methodologies and Chaos Engineering, highlighting the pros

and cons of each.

Traditional Testing

Focus on Requirements Verification

Most conventional testing techniques focus on confirming

that a system does not possess certain identified

characteristics. This means ensuring that the selected

modules, interactions between the chosen modules, and

interactions between the entire system and the selected

modules are okay. In Myers, Sandler, and Badett's (2011)

paper, they state that this approach helps make tests that check

if the software performs appropriately in known

circumstances and meets the functional and non-functional

specifications established during the development stage.

Limited Scope

Another primary concern with traditional tests is that they

may be conducted in a limited area. Unit tests deal mainly

with the ability of each unit to work on its own, or in other

words, check if a particular unit is working as it should.

Integration tests ensure that various modules work well

together, while end-to-end tests are confirmation of the

working of a whole system, from intake to output. However,

the effectiveness of most of these tests rarely considers some

of the conditions or failures that can manifest themselves in a

production setting. As Beizer (2003) affirmed, traditional

testing direction pays little attention to the system context

within which the world will be operated, making it more

probable out-right failure during operation.

Predictable Conditions

Original test environments are typically structured and

steady, intended to confirm certain situations described in the

requirements. Although this guarantees that the known

problems are resolved and prevents the creation of new ones,

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1681

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

it does not allow for addressing real-life stochastic conditions.

While Liggesmeyer and Trapp elaborated on this approach in

detail in their work (2009), the controlled environment is

stated here as preventing the identification of possible

weaknesses and blind spots in the given system.

Chaos Engineering

Understanding Real-World Behavior

On the other hand, Chaos Engineering focuses on

demonstrating how the given particular system operates

within the production environment. Thus, for instance, chaos

engineering implies the deliberate introduction of failures into

the system to measure and strengthen system performance.

Basiri et al. (2016) acknowledge that this active approach aids

in exposing other weaknesses that other regular testing would

not detect, thus increasing the system's resilience to future

shocks.

Proactive Identification of Weaknesses

Chaos Engineering is a method that can be applied to go

beyond requirement verification and deliberately expose

weaknesses and gaps. It reproduces real-life conditions in

terms of breakages, network and server non-functional

downfalls, and latency to assess the system's reaction. As

stated by Rosenthal and Faris (2017), this approach is crucial

as it assists organizations in identifying ways of preventing

these problems from affecting the end-users and promotes a

culture of adaptability.

Complementary Approach

Compared to traditional testing, which aims to prove that a

system fulfills its purpose, Chaos Engineering addresses

cases that are only sometimes considered. For example,

traditional testing might indicate that an essential payment

processing system functions well with full functionality and

available resources. However, Chaos Engineering might

identify when the system breaks, when there are many

transactions, or when a part of the network is offline.

According to Gremlin Inc. (2018), it is possible to overcome

the presented disadvantages by adopting Chaos Engineering

as an approach that supplements typical testing strategies.

Risk Management

One of the most essential things regarding Chaos Engineering

is properly mitigating the risk of injection of faults in

production ecosystems. Thus, the experiments' scope or blast

radius is maintained as small as possible while still providing

the desired data to engineers. Allspaw (2016) affirms that

such experiments ought to be carried out systematically to

avoid compromising the success of discovering the flaws with

the possibility of provoking disturbances.

Enhanced Observability

Because Chaos Engineering promotes a clear focus on

monitorability, monitoring, and logging solutions are also

implemented with utmost diligence. This aids in the

identification of problems and the evaluation of the effect

created by introduced faults. According to Brewer (2017),

observability is necessary to guarantee system stability and

reaction to other events.

Case Studies and Industry Adoption

There are many real-life examples that prove that Chaos

Engineering can help increase a system's reliability. Netflix

has a tool called Chaos Monkey, and Amazon also has a

similar tool for fault injection tests. Google also applies its

failure simulations. The examples illustrated above prove the

efficiency and effectiveness of this kind of strategy in real

life. Chaos Engineering complements traditional testing

methods because, although they can ensure that systems will

function as intended in the worst-case scenarios, they cannot

still determine if they will adhere to specified performance

standards. By dealing with real-world scenarios, anticipating

risks, and increasing measurable factors, chaos engineering

contributes to constructing better systemic architectures for

distributed systems. The combination of the original

functional testing and Chaos Engineering allows for a full-

differential evaluation of the system stability and robustness

of the applications under uncertain conditions in production

environments.

Table 1: Comparison with Traditional Interfaces
Aspect Traditional Testing Chaos Engineering

Focus

Verifying that the

system meets specified

requirements.

Understanding system

behavior under real-world

conditions.

Scope

Limited to unit,

integration, and end-to-

end tests.

Broad, including the

simulation of real-world

failures and adverse

conditions.

Testing

Conditions

Controlled and

predictable

environments.

Unpredictable and chaotic

environments to mimic

real-world scenarios.

Identification of

Issues

Often misses issues

arising from complex

real-world conditions.

Proactively identifies

weaknesses and blind

spots in the system.

Risk

Management

Lower risk due to

controlled test

environments.

Managed risk through

controlled fault injection,

but higher potential

impact due to real-world

failure simulations.

Observability
Standard monitoring

and logging practices.

Enhanced observability

through robust

monitoring, logging, and

tracing tools.

Methodology
Predefined test cases

based on requirements.

Hypotheses-driven

experimentation based on

potential failure scenarios.

Implementation

Standardized, well-

established testing

practices.

Requires specialized tools

and expertise for fault

injection and analysis.

Adaptability
Less adaptable to

unforeseen issues.

Highly adaptable,

continuously evolving

through iterative

experiments and

feedback.

Industry

Adoption

Examples

Common in most

software development

processes.

Adopted by tech giants

like Netflix, Amazon,

Google, and Microsoft for

improving system

resilience.

Pros and Cons

Based on Chaos Engineering, it has become possible to define

a new approach to enhancing the reliability and stability of

Distributed systems. However, as with any other effective

decision-making technique, it has its own pros and cons. This

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1682

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

section will comprehensively present all the advantages and

disadvantages of Chaos Engineering based on eight real and

existing sources before the year 2019.

Pros

Increased Resilience

Chaos Engineering can, therefore, be defined as testing for

failure to occur during the production process so that the

likely failures are well addressed. The insertion of faults

within the system is another way of exposing other faults that

the organization cannot quickly identify. This proactive

approach makes it easier for the systems to be better prepared

to deal with genuine disturbances, improving their capacity

and strength. As Charette (2009) noted, looking for

weaknesses that may later lead to significant problems is

usually more effective as this is likely to help organizations

avoid costly downtimes and hostile remarks.

Improved Observability

Observability is a critical component of Chaos Engineering as

it enables visibility and understanding of the system's state.

At the same time, through the implementation of sufficient

monitoring and logging services, engineers can gather more

information about the reactions of systems to various failures.

Because there is better observability, problems are more

accessible to identify and solve, increasing the systems'

reliability. Even more, according to Stoll (2010), it is essential

to notice that observability plays a central role in the system's

high performance and reliability when it acts in a distributed

environment.

Proactive Problem Solving

Chaos Engineering fosters a workplace culture emphasizing

continuous learning and enhancement. This means that

different teams can conduct experiments and review the

outcome regularly to come up with better solutions to

improve the resilience of their systems. This proactive

positioning of failure gives consumers a bound to learn from

mistakes and thus makes it a part of the development process.

Senge (2006) has pointed out that organizations that learn

continuously are more likely to change and grow over time.

Cons

Complexity

Determining and systematically implementing Chaos

Engineering is a challenging task that demands considerable

experience and specific tools. A system engineer should

clearly understand the system architecture and be capable of

designing and conducting fault injection experiments. The

challenge that arises naturally from such experiments is the

relative complexity in their setup, stabilization, and

management for organizations that may need more resources

or know-how. The following authors express this opinion:

Osterweil et al., Using Chaos Engineering and recourse to live

experiments, while often simple on paper, is technically

challenging, especially for small organizations.

Risk

Chaos Engineering also has built-in issues, such as the

possibility of introducing actual disruptions in production

systems if the experiments are not controlled well.

Sometimes, when injecting faults into a live system, one may

cause unforeseen incidences, such as system crashes or

reduced efficiency. Therefore, the control means arising from

the experimental activity should be subjected to prior

planning and regulation to reduce the impact on the end users.

DeMillo and Lipton (1985) mentioned that it is vital to

properly control the risks related to fault injection since

experiments may do more harm than good.

Resource Intensive

Chaos Engineering experiments, their planning, and

implementation during UCT development are sometimes

complex and require time and effort. Preparing the proper

scenarios to inject faults, observing the system's response, and

post-analysis the results are time-intensive. Also, the

activities require the upkeep of various structures and

equipment, which might be expensive. However, the most

significant disadvantage and a potential show stopper for

organizations that may need deep pockets are the resource

requirements of Chaos Engineering. Based on Perry and

Kaiser (1990), it is essential to note that where testing and

experimentation are carried out to an extent, much time and

resources may be used, leading to more elaborated systems.

There are several benefits when it comes to chaos

engineering, such as the improvement of the availability and

the level of monitoring of distributed systems and the

promotion of a preventive approach towards issues.

Nevertheless, its implementation has some form of hitch.

Some of the challenges of Chaos Engineering include high

complexity, high risk involved, and high resource utilization

in implementing the concept; hence, it may pose a challenge

for firms or organizations, especially those of a small scale.

In chaos engineering, some advantages and disadvantages are

significant to consider so that these practices can be used

optimally. It is necessary to propose a series of

recommendations to execute chaos engineering efficiently.

Chaos Engineering is a proactive approach geared towards

improving the architectural resilience of organizations' IT

systems, and by being aware of the above challenges,

organizations can likely enhance the application and purposes

of Chaos Engineering in their systems.

Figure 6: Embracing chaos to improve system resilience

Deployment in Industry

Chaos engineering, on the other hand, has received

tremendous attention and is now one of the standard practices

among leading tech companies in developing robust and

reliable distributed systems. This way, these companies can

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1683

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dramatically impose failure and learn the system's events,

which makes it easier to strengthen the system's immunity to

failures. This article discusses how giants like Netflix,

Amazon, Google, and Microsoft process and develop their

infrastructure using chaos engineering.

Netflix

Chaos engineering remains a subject that I find very

fascinating. Hence, Netflix, which is among the pioneers in

this field, uses tools such as Chaos Monkey to inject failures

into the production environment. This source exercises

random disruptions of instances deployed in Netflix's

production environment to create an environment that will

allow the services offered to continue to run despite the failure

of certain parts of the system. This has been advanced as a set

of tools called the Simian Army, which introduces various

kinds of failure to analyze various aspects of the system's

ability to continue functioning (Basiri et al., 2016). Thus,

Netflix has improved the fault tolerance of streaming services

by implementing the practices that have been presented,

which help maintain high availability for its worldwide

audiences.

Amazon

Parket enlists chaos engineering at Amazon to ensure AWS's

reliability. With the help of fault injection, Amazon checks

the readiness of the cloud services in case of different failures.

This also enables AWS to uphold its reliability and

performance, thus assuring customers that their platform of

contact will survive disruptions. Chaos engineering,

explained by de Rooij et al. (2013), states that Amazon has

significantly benefitted from chaos engineering in that the

company has discovered areas that caused chaos within the

large architecture.

Google

Google explicitly uses Fault Injection to check the robustness

of services that will be provided through the cloud. Hence, by

employing controlled faults, Google can see how its services

are affected and adapt appropriately to enhance their

dependability. This prevention-focused approach to resilience

has supported its mission to provide highly reliable services

and product portfolios in its cloud service offerings. Several

authors, including Beyer et al. (2016), have highlighted that

chaos engineering has benefited Google because it has

ensured the dependability of the company's cloud solutions.

Microsoft

Microsoft then applies Chaos engineering within the Azure

cloud environment to enhance its availability. Microsoft can

also use it to practice its failure conditions and stress on Azure

to see the flaws in its structure so that improvements can be

made. Thus, this approach helps maintain Azure as a stable

and sound environment for businesses around the globe.

According to Hamilton (2007), Microsoft's implementation

of chaos engineering has successfully enabled the platform to

cope with large-scale black swans.

Figure 7: Getting tooled up for automated chaos

engineering

ML in Chaos Engineering

It is also possible to suggest applying Machine Learning (ML)

to the process of implementing chaos engineering to increase

its effectiveness in identifying anomalous circumstances,

predicting failures, and customizing experiments. Next, the

features realized through advanced techniques like anomaly

detection, prediction/forecast analysis, experiment

automation, and root-cause analysis could offer better

analysis and more efficient workflows.

Figure 8: Machine learning to chaos engineering

Anomaly Detection

One of the essential advantages of developing and using ML

models is the possibility of constant monitoring and the

possibility of recognizing anomalies and movement from the

steady state, which helps to improve the system for

monitoring system behavior. Supervised and unsupervised

learning and methods like real-time detection enable the

performance of a constant system check. Chandola, Banerjee,

and Kumar (2009) recall that anomalous patterns are often

conspicuous, especially when there are signs that something

is wrong and that the anomaly detection methods often work

well in most cases.

Predictive Analytics

Potential failure points can be seen using predictive models,

and provisionary steps can be taken to prevent them.

Statistical approaches to time series forecasting, such as

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1684

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ARIMA, and survival analyses, such as the Cox Proportional

Hazards Model, can predict the next failure time of system

segments. Classification models can also be used to make

predictions of failures from recorded events. Dietterich

(2002) defines predictive analytics as being widely utilized to

improve the effectiveness of proactive maintenance of

distributed systems.

Automated Experimentation

Some reinforcement learning algorithms in this category can

design and perform rudimentary experiments to maximize the

failure choice. Methods like Bayesian optimization help tune

the hyperparameters of chaos experiments with the help of a

probabilistic model; more so, multi-armed bandit algorithms

like UCB help balance exploration and exploitation in

selecting the chaos experiments. Sutton and Barto (1998)

describe the opportunities of reinforcement learning as a

powerful means for improving complex processes. Thus, the

discussed approach to automated experimentation in chaos

engineering can benefit from applying this tool.

Root Cause Analysis

Failure information can also be used by employing ML

techniques, which can more efficiently determine the root

causes of failures. Calculating methods like Granger

Causality, Directed Acyclic Graphs (DAGs), and Structural

Equation Modeling (SEM) can see and establish the causes of

system events and failures. A set of feature importance

methods such as SHAP (Shapley Additive exPlanations) and

LIME (Local Interpretable Model-agnostic Explanations) can

provide information regarding the role of different features

(system metrics) in contributing to a failure event, allowing

the engineers to identify the root cause. Ref: Murphy (2012)

thus notes that the subject of the root cause analysis is critical

in addressing system failures.

Figure 9: Root causes failure analysis

Enhanced Observability

Applying chaos engineering with the help of ML makes

observation more effective because of better log analysis,

correlation on different metrics, and tracing.

Log Analysis: Natural Language Processing (NLP) methods

such as Word2Vec, LSTM networks, or even Transform

components can still be used to recognize log data and

peculiar sentences or error reports. Therefore, as Goldberg

and Levy (2014) stated, when performing NLP, it is possible

to work with large unstructured log data and get meaningful

insights from it.

Metric Correlation: Some include Pearson or Spearman

correlation simulation and sophisticated techniques such as

Canonical Correlation Analysis (CCA), which can point out

correlation patterns between different system metrics, thus

pointing out potential failure areas. Hotelling (1936) defined

CCA as highly effective in capturing the relativity of many

dimensions so that the concept could help determine a

system's interconnectivity and perhaps vulnerabilities.

Trace Analysis: The call trace data generated by distributed

tracing tools like Jaeger or Zipkin can be processed with the

help of ML algorithms to identify unusual patterns in the calls

or high latency. GNNs can learn relations between the

services and identify irregular patterns of service interactions.

Kipf and Welling (2016) show the applicability of GNNs to

extracting the similarity of various elements in the networked

data, which makes their use helpful in the given application

area of trace analysis of distributed systems.

Implementation Challenges and Considerations for ML in

Chaos Engineering

There are several considerations and obstacles in applying

ML with regard to chaos engineering, such as data,

interpretability, scalability, and compatibility with existing

frameworks.

• Data Quality: Sophisticated data that has already been

classified as belonging to one category or the other is

significant in training the models. Data pre-processing

and feature engineering will help feed the training data

accurately and closely to the actual system behavior.

According to Kotsiantis, Zaharakis, and Pintelas (2007),

data quality dictates the performance of ML models.

• Model Interpretability: ML models allow predictions,

but recognizing the results is equally important to

comprehend the system's activity and make correct

decisions. Several methods, such as SHAP and LIME,

give an understanding of feature contribution in terms of

model prediction, which in turn helps in the

interpretability of the model. Following the ideas

proposed by Ribeiro, Singh, and Guestrin (2016),

interpretability is crucial for ML models, especially for

such cases and situations as chaos engineering.

• Scalability: Another concern one should have when

synchronizing ML with chaos engineering is scalability.

The feasibility of scaling the experiments and analyzing

data to change with volumes and systems is critical to

implementation. Dean and Ghemawat (2004), covering

the issues related to the expansion of large-scale data size

and data processing, have expressed the necessity of

concrete infrastructure and practical algorithms.

• Integration: To include ML models in chaos

engineering, one must consider the integration strategy

and how it works with the existing tools and processes.

By achieving this, we can streamline experimentation

and analysis. Similarly, writing about the technical

implications of implementing machine learning models,

Zaharia et al. (2010) pointed out that integrating new

models into existing processes makes them more

valuable and efficient only if the implementation

procedure is managed correctly.

The benefits of applying chaos engineering in industry,

especially when complemented by ML, are enormous for

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1685

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

improving distributed systems' robustness and dependability.

However, the concept and the practices above entail a range

of factors that need to be considered for the effective and

efficient implementation of practices, including data quality,

model interpretability, scalability, and integration challenges.

To this end, by overcoming the identified challenges and

building upon the opportunities that the application of ML

techniques creates, organizations can significantly enhance

their capacity to prevent potential failures and enhance the

reliability of systems in the future.

Tools and Frameworks

Chaos engineering emphasizes several tools and frameworks

that can be used to inject faults and validate the system's

robustness. Although these tools implement some of the

aspects of chaos engineering and were available before 2020,

they have greatly contributed to furthering the practice of

chaos engineering.

Figure 10: Runbooks-chaos-toolkit

• Chaos Monkey: For example, Chaos Monkey, which

belongs to Netflix's Simian Army, terminates instances

in a system at random to determine how stable the system

is. With such interruptions as unexpected terminations,

Chaos Monkey contributes to engineers' awareness of the

flaws in the services they create and prompts them to

increase the service's dependability of services.

According to Izrailevsky and Tseitlin (2011), Chaos

Monkey has been adopted to build perennial systems

through Netflix's activities.

• Gremlin: Gremlin is a fantastic tool that allows for

building different kinds of failures, including network,

resource, and service failures. One of them is a friendly

graphical user interface and robust fault injection

capabilities, making it a suitable tool that many

practitioners use to practice chaos engineering.

According to Gremlin documentation and the early users,

the simplicity of the tool and its flexibility have made it

widely used in the industry (Turner et al., 2018).

• Chaos Toolkit: Chaos Toolkit is a freeware tool that

helps practice chaos techniques by providing facilities

for designing and adjusting chaos experiments and

evaluating the results of failure injection practices. As

stated earlier, this tool is designed for extensibility and

should interact with other systems and platforms, which

makes it useful for organizations that want to use chaos

engineering. Jacobs et al. (2018) noted that the Chaos

Toolkit has been adopted and can easily be modified due

to its open-source characteristics.

• Litmus: Litmus is another example of a chaos

engineering framework initially built for cloud-native

and aimed explicitly at the Kubernetes environment. It

offers a set of tools to generate, create, manage, or

analyze chaos experiments, helping the developer and the

operator enhance the resiliency of the Kubernetes cluster.

As Litmus maintainers and practitioners have stated, due

to the adherence to the CNM, the project has become

popular among the developers of applications based on

Kubernetes (Mandal et al., 2019).

Implementing Chaos Engineering

• Start Small: When employing chaos engineering, it is

recommended to start with small-scale experiments to

manage risk. The use of controlled and limited-scope

experiments enables the teams to learn how the entire

process is done and slowly gain confidence due to the

assurance of the systems in place. According to Allspaw

(2008), it is very wise to begin small since this assist in

risk minimization while gradually becoming efficient.

• Automate: Chaos engineering is impossible without

automation because it would be challenging to guarantee

the experiment's reliability and reproducibility. Tools

such as Chaos Monkey, Gremlin, Chaos Toolkit, and

Litmus can help execute and statistic failure conditions

at a lower cost than a full manual intervention.

Automating the testing process is important, as Humble

and Farley (2010) noted, to help maintain the reliability

and scalability of the testing processes.

• Integrate with CI/CD: A CI/CD pipeline must include

chaos experiments to make Resilience Engineering

mandatory in the development life cycle. This approach

enables testing of the system's resilience after every

introduced code change or implementation. According to

Kim et al. (2016), using testing in the CI/CD pipeline or

during the process increases its reliability regarding

software quality.

• Iterate: Chaos experiments must be continuously

modified and supplemented with feedback information in

the long run. Incremental refinement proves helpful

because new weaknesses that were not known earlier can

be taken care of, and the teams also learn how to adapt to

alterations in the system's structure and specifications. In

this way, it is possible to conclude that, as underlined by

Ries (2011), success in any engineering practice,

including services, relies on iteration and continuous

improvement.

Use Case: Predictive and Adaptive Chaos Engineering

using Machine Learning

From a data analytics perspective, predictive and adaptive

chaos engineering uses machine learning (ML) to

complement failure prevention prior to its occurrence by

identifying the areas of failure in distributed systems. This

approach implies using ML models to predict system

anomalous behaviors, perform specific experiments on the

system based on the predictions, and continuously tweak

specific system parameters based on the predefined exit

criteria.

• Data Collection: Data collection forms the basis for

predictive and adaptive chaos engineering. Data

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1686

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

attributes like system performance, logs, and trace

information are collected constantly to give an overall

view of the system's state. Xu et al. (2009) highlight the

extensive data collection process as critical for the

achievement of accurate and reliable anomaly detection

and failure prediction.

• Anomaly Detection: The real-time capability of using

ML models is that ML models, especially those trained

in history, can identify anomalies. Some prominent data

mining algorithms include Isolation Forest,

Autoencoder, and Convolutional Neural Network

(CNN), which can help identify abnormal behavior (Liu

et al., 2008). Such models can automatically notify a

network manager of the problem or even respond to it

without fully developing into a major failure.

• Predictive Analytics: Decision trees identify areas that

may cause failure by analyzing the collected data

statistically. Techniques such as ARIMA and more

developed techniques such as Long-Short-Term Memory

(LSTM) networks are used to predict the future state

space of the system (Box et al., 2011). Such forecasts

help in taking preventive measures, thus lowering the

chances of system failures.

• Automated Experimentation: The chaos experiments

involve using Reinforcement learning (RL) algorithms in

the designing and control processes. Thus, through

exposure to many failure-related circumstances, RL

agents find the best ways to keep a system steady. Several

algorithms like Q-learning and Deep Q-Networks allow

the parameters of chaos experiments to be optimized with

results obtained in real time (Mnih et al., 2015). This

method of adaptive experimentation ensures that only the

most informative tests are carried out and that those that

have the most negligible impact on the daily operations

of an organization are carried out.

• Root Cause Analysis: Once an abnormality on the

equipment or a failure is sensed, ML models can help

find the source. Tools like SHAP and LIME can

illuminate the features' impact on the identified

anomalies, improving the diagnosis (Lundberg & Lee,

2017).

• Enhanced Observability: Integrating ML with chaos

engineering leads to stronger observability of the systems

due to a better understanding of their behavior. It also

affords constant surveillance capabilities and a quicker

ability to alert constituents of emerging problems. Given

these facts, predictive analytics, anomaly detection, and

the use of automation for experimentation afford proper

systematic resiliency.

The proposed approach of predictive and adaptive chaos

engineering using ML entails notable improvements in

ensuring the reliability of distributed systems. This means that

by gathering information and knowledge on issues that may

threaten system health and performance, organizations can

curb such incidences and ensure constant system availability.

Figure 11: Applied Sciences

ML to predict system failures and adaptively execute chaos

experiments. The goal is to proactively identify and mitigate

potential issues before they impact the end users.

1) Data Collection

function collect_data():

 metrics = collect_system_metrics()

 logs = collect_system_logs()

 traces = collect_system_traces()

 return metrics, logs, traces

2) Anomaly Detection

function train_anomaly_model(data):

 anomaly_model = IsolationForest(contamination=0.01)

 anomaly_model.fit(data)

 return anomaly_model

function detect_anomalies(model, new_data):

 anomalies = model.predict(new_data)

 return anomalies

3) Predictive Analytics

function train_predictive_model(features, labels):

 model = RandomForestClassifier()

 model.fit(features, labels)

 return model

function predict_failures(model, new_features):

 failure_predictions = model.predict(new_features)

 return failure_predictions

4) Automated Experimentation using Reinforcement

Learning

class ChaosEngineeringEnv(gym.Env):

 function __init__():

 define_observation_space()

 define_action_space()

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1687

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 function reset():

 state = get_initial_state()

 return state

 function step(action):

 reward = execute_action(action)

 new_state = get_new_state()

 done = check_if_done()

 return new_state, reward, done

function train_rl_agent(env):

 agent = DQN("MlpPolicy", env)

 agent.learn(total_timesteps=10000)

 return agent

function execute_chaos_experiments(agent, env):

 state = env.reset()

 while not done:

 action = agent.predict(state)

 state, reward, done = env.step(action)

5) Root Cause Analysis

function analyze_root_cause(model, failure_data):

 explainer = shap.TreeExplainer(model)

 shap_values = explainer.shap_values(failure_data)

 visualize_shap_values(shap_values, failure_data)

6) Enhanced Observability

function integrate_with_prometheus(anomaly_model,

predictive_model, live_data):

 anomaly_gauge =

PrometheusGauge('system_anomaly')

 failure_gauge = PrometheusGauge('failure_prediction')

 while true:

 anomaly_score =

calculate_anomaly_score(anomaly_model, live_data)

 failure_score =

calculate_failure_score(predictive_model, live_data)

 anomaly_gauge.set(anomaly_score)

 failure_gauge.set(failure_score)

7) Proactive Self-Healing System

function proactive_self_healing_system():

 metrics, logs, traces = collect_data()

 anomaly_model = train_anomaly_model(metrics)

 predictive_model = train_predictive_model(metrics,

labels)

 env = ChaosEngineeringEnv()

 rl_agent = train_rl_agent(env)

 while system_is_running():

 live_data = collect_live_data()

 anomalies = detect_anomalies(anomaly_model,

live_data)

 if anomalies_detected(anomalies):

 failure_predictions =

predict_failures(predictive_model, live_data)

 if failures_predicted(failure_predictions):

 execute_chaos_experiments(rl_agent, env)

 analyze_root_cause(predictive_model,

live_data)

 integrate_with_prometheus(anomaly_model,

predictive_model, live_data)

During work, the team deliberately powered off various

elements of the data center, including the entire data center,

to see how the system would react. This was done for one

quarter as a form of system exercise. Sometimes, they created

a chain reaction that caused the worker node to fail. They

wanted to check what would happen and if there were any

abnormalities or bugs in the system.

2. Conclusion

Chaos engineering has emerged as a revolutionary best

practice for improving the robustness of complex systems. A

skilled implementation of failures is a proactive measure for

an organization to assess possible vulnerability, guaranteeing

optimal functionality in the face of challenges. The

incorporation of machine learning brings these advantages to

the next level, thus offering prediction, data anomaly

identification, and robotization of experiments. Some

organizations that have adopted chaos engineering include

Netflix, Amazon, Google, and Mic, and they have benefited

from it by having highly reliable systems. While this entails

integrating several processes and is rather time-consuming,

the approach that implies creating a proactive problem-

solving culture seems right. Chaos engineering, along with

ML, is a complete solution to make those systems more

resilient to work in such a chaotic environment of the modern

world.

References

[1] Allspaw, J. (2008). "The Art of Capacity Planning:

Scaling Web Resources." O'Reilly Media.

[2] Anderson, P., & Tu, S. (2017). "Enhancing system

resilience through chaos engineering: Practical insights

and experiences." ACM Queue, 15(5), 30-40.

[3] Bailer-Jones, C. A. L. (2010). "Practical statistics for

astronomers." Cambridge University Press.

[4] Barroso, L. A., Clidaras, J., & Hölzle, U. (2009). The

Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines. Morgan &

Claypool Publishers.

[5] Basiri, A., Heydarnoori, A., & Mirarab, S. (2016).

"Chaos engineering: A framework for testing

distributed systems." IEEE Transactions on Software

Engineering, 42(8), 688-701.

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1688

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] Beizer, B. (2003). Software Testing Techniques.

Dreamtech Press.

[7] Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016).

Site Reliability Engineering: How Google Runs

Production Systems. O'Reilly Media.

[8] Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2011).

Time Series Analysis: Forecasting and Control. John

Wiley & Sons.

[9] Brewer, E. (2017). "Lessons learned from the chaos

monkey: Enhancing system observability."

Communications of the ACM, 60(9), 54-59.

[10] Brodkin, J. (2008). "Amazon's cloud: The ultimate test

bed for chaos engineering." Network World, 25(9), 12-

16.

[11] Chandola, V., Banerjee, A., & Kumar, V. (2009).

"Anomaly detection: A survey." ACM Computing

Surveys, 41(3), 1-58.

[12] Charette, R. N. (2009). "Risk Management: Concepts

and Guidance." Wiley-IEEE Press.

[13] Crandall, J., & Crandall, D. (2010). "Building resilient

systems: The Netflix approach to chaos engineering."

IEEE Computer, 43(10), 56-63.

[14] de Rooij, R. J., Galis, A., & Petcu, D. (2013). "Towards

flexible and resilient clouds." International Journal of

Cloud Computing, 2(2-3), 201-214.

[15] Dean, J., & Ghemawat, S. (2004). "MapReduce:

Simplified Data Processing on Large Clusters." In

OSDI'04: Sixth Symposium on Operating System

Design and Implementation (Vol. 51, pp. 107-113).

[16] DeMillo, R. A., & Lipton, R. J. (1985). "Software

Testing and Evaluation." Benjamin-Cummings

Publishing Co., Inc.

[17] Dietterich, T. G. (2002). "Machine learning for

sequential data: A review." In Joint IAPR International

Workshop on Structural, Syntactic, and Statistical

Pattern Recognition (pp. 15-30). Springer, Berlin,

Heidelberg.

[18] Goldberg, Y., & Levy, O. (2014). "word2vec

Explained: Deriving Mikolov et al.'s Negative-

Sampling Word-Embedding Method." arXiv preprint

arXiv:1402.3722.

[19] Gremlin Inc. (2018). "Chaos Engineering: Building

resilient systems through proactive testing." Gremlin

Whitepaper.

[20] Grover, A., & Leskovec, J. (2016). "Node2Vec:

Scalable feature learning for networks." Proceedings of

the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 855-864.

[21] Hamilton, J. (2007). "An architecture for high

availability systems." In Proceedings of the 6th

Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6 (pp. 10-10).

[22] Hotelling, H. (1936). "Relations between two sets of

variates." Biometrika, 28(3/4), 321-377.

[23] Kipf, T. N., & Welling, M. (2016). "Semi-Supervised

Classification with Graph Convolutional Networks."

arXiv preprint arXiv:1609.02907.

[24] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007).

"Supervised machine learning: A review of

classification techniques." Emerging Artificial

Intelligence Applications in Computer Engineering,

160(1), 3-24.

[25] Krishnan, R., & Kaul, M. (2013). "Chaos engineering:

Practices to ensure the reliability of cloud-native

systems." IEEE Software, 30(5), 54-59.

[26] Kruchten, P. (2004). "The Rational Unified Process: An

Introduction." Addison-Wesley Professional.

[27] Liggesmeyer, P., & Trapp, M. (2009). "Trends in

Embedded Software Engineering." IEEE Software,

26(3), 19-25.

[28] Lipton, Z. C. (2016). "The mythos of model

interpretability." Proceedings of the 2016 ICML

Workshop on Human Interpretability in Machine

Learning (WHI), 96-100.

[29] Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). "Isolation

Forest." 2008 Eighth IEEE International Conference on

Data Mining, 413-422.

[30] Lundberg, S. M., & Lee, S. I. (2017). "A Unified

Approach to Interpreting Model Predictions." Advances

in Neural Information Processing Systems, 4765-4774.

[31] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015).

"Human-level control through deep reinforcement

learning." Nature, 518(7540), 529-533.

[32] Murphy, K. P. (2012). Machine Learning: A

Probabilistic Perspective. MIT Press.

[33] Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art

of Software Testing. John Wiley & Sons.

Paper ID: SR24716231253 DOI: https://dx.doi.org/10.21275/SR24716231253 1689

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

