
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing Data Engineering and AI Development

with the 'Consolidate-csv-files-from-gcs' Python

Library

Preyaa Atri

Email: preyaa.atri91[at]gmail.com

Abstract: This paper introduces the "Consolidate-csv-files-from-gcs" library, a Python library designed to enhance both data engineering

efficiency and AI development by streamlining the process of merging multiple CSV files stored in Google Cloud Storage (GCS) buckets. We

explore the library's functionalities, including installation, usage, and the underlying logic of its core function. The library not only simplifies

data merging but also supports the creation of unified datasets critical for AI model training and analysis. We discuss its applications, potential

impacts, and future development recommendations to further improve data engineering practices and AI advancements.

Keywords: Google Cloud Storage, CSV, Data Merging, Python Library, Data Engineering, AI

1. Introduction

Data scientists and engineers often spend considerable time

preparing data for analysis, underscoring the need for tools that

streamline these processes (Burg et al., 2019). The

"Consolidate-csv-files-from-gcs" library addresses this by

providing an efficient method to merge fragmented data stored

in various formats across different sources in Google Cloud

Storage. By utilizing this Python library, users can consolidate

multiple CSV files into a cohesive dataset, facilitating easier

data analysis and visualization (Chillón et al., 2019). This

process not only enhances data interoperability but also

supports AI development by ensuring a unified dataset for

model training and evaluation (Karpathiotakis et al., 2014).

Traditional methods of merging CSV files manually or through

custom scripts are prone to errors and inefficiencies, which this

library aims to mitigate (Siow et al., 2016).

2. Problem Statement

Merging numerous CSV files manually can be a cumbersome

and error-prone task, especially for datasets containing a

significant number of files. Traditional approaches might

involve scripting or custom code to iterate through files,

potentially leading to inconsistencies and inefficiencies. The

Consolidate-csv-files-from-gcs library addresses this challenge

by providing a streamlined solution for merging CSV files

stored within a GCS bucket.

3. Solution

The Consolidate-csv-files-from-gcs library offers a user-

friendly function, Consolidate-csv-files-from-gcs, that

automates the process of merging CSV files. This function takes

five arguments:

• bucket_name (str): The name of the GCS bucket

containing the CSV files.

• prefix (str): A string specifying the prefix to filter files

within the bucket. This allows targeting specific folders

within the bucket (e.g., "path/to/your/csv/files/"). A trailing

slash is mandatory.

• merged_file_name (str): The desired filename for the

merged CSV file.

• output_bucket_name (str): The name of the GCS bucket

where the merged file will be stored.

• output_bucket_name_prefix (str, optional): An optional

prefix to add to the filename within the output bucket. If not

provided, defaults to the prefix argument.

Functionality

The core functionality of the Consolidate-csv-files-from-gcs

library lies within the Consolidate-csv-files-from-gcs function.

This function automates the process of merging multiple CSV

files stored in a GCS bucket. Let's explore the arguments it

takes:

• bucket_name (str): This argument specifies the name of the

GCS bucket containing the CSV files you intend to merge.

• prefix (str): This argument allows you to filter the files

within the bucket using a prefix. For example, if you provide

"path/to/your/csv/files/", the function will only consider

CSV files located within that specific folder structure within

the bucket. Remember to include a trailing slash at the end

of the prefix string.

• merged_file_name (str): This argument defines the desired

filename for the merged CSV file that will be created by the

function.

• output_bucket_name (str): Specify the name of the GCS

bucket where the merged CSV file should be stored after the

consolidation process.

• output_bucket_name_prefix (str, optional): This optional

argument allows you to add a prefix to the filename within

the output bucket. If not provided, the function will default

to using the prefix argument you provided earlier.

Paper ID: SR24522151121 DOI: https://dx.doi.org/10.21275/SR24522151121 1863

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Installation

The Consolidate-csv-files-from-gcs library can be conveniently

installed using pip, the Python package manager. Here's the

installation command:

Usage

Using the Consolidate-csv-files-from-gcs library is

straightforward. Here's a basic code example demonstrating its

application:

In this example, the code snippet merges all CSV files located

within the "path/to/your/csv/files/" folder inside the bucket

named "your-bucket-name". The merged file will be named

"merged_data.csv" and uploaded to the "output-bucket-name"

bucket with an optional prefix of "merged/data/".

Dependencies and Considerations

The Consolidate-csv-files-from-gcs library leverages two

external libraries to function effectively:

• google-cloud-storage: This library provides functionalities

for interacting with Google Cloud Storage buckets. Ensure

you have it installed using pip install google-cloud-storage

before using Consolidate-csv-files-from-gcs.

• pandas: This library is used for working with DataFrames,

a powerful data structure in Python for data manipulation.

You can install it using pip install pandas.

It's important to consider that the Consolidate-csv-files-from-

gcs library assumes all the CSV files being merged have a

consistent schema (column structure). If the files have differing

schemas, additional data cleaning or pre-processing steps might

be necessary before using this library for merging.

4. Uses and Impact

The "Consolidate-csv-files-from-gcs" library offers significant

advantages for data engineers and AI developers working with

CSV files in GCS. It reduces development time by providing a

pre-built, efficient solution for file merging, and automates

encoding detection using the chardet library, eliminating the

need for manual configuration. By leveraging Pandas

DataFrames for in-memory manipulation, the library ensures

efficient memory usage during the merging process.

Beyond simplifying file merging, the library allows data

engineers to focus on more complex data manipulation and

analysis tasks, leading to faster turnaround times for data

processing and improved overall workflows. For AI

development, the creation of unified datasets from disparate

sources is critical. This library facilitates the preparation of

high-quality datasets, which are essential for training robust AI

models and enhancing the accuracy of AI-driven insights and

predictions.

5. Conclusion

The "Consolidate-csv-files-from-gcs" library is a valuable tool

for both data engineers and AI developers. It streamlines the

process of merging multiple CSV files, reduces development

time, and automates encoding detection. While it is currently

limited to CSV files with a consistent schema, its functionalities

significantly enhance data engineering workflows and support

the advancement of AI by enabling the creation of unified

datasets. Future development should focus on incorporating

schema validation, robust error handling, and progress

reporting to make the library even more comprehensive and

user-friendly.

Paper ID: SR24522151121 DOI: https://dx.doi.org/10.21275/SR24522151121 1864

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Future Scope

The Consolidate-csv-files-from-gcs library is designed

specifically for merging CSV files stored in GCS buckets.

While it offers functionalities for encoding detection, it is

essential to note that the library assumes a consistent schema

across the CSV files being merged. If the files have differing

schemas, additional data cleaning or pre-processing steps might

be necessary before utilizing Consolidate-csv-files-from-gcs.

Here are some recommendations for future development of the

Consolidate-csv-files-from-gcs library:

• Schema Validation: Incorporating basic schema validation

checks during the merging process would enhance data

quality and prevent potential issues arising from

inconsistencies between files (Chillón et al. 2019).

• Error Handling: Implementing robust error handling

mechanisms would allow the library to gracefully handle

situations such as encountering corrupted files or

encountering unexpected file formats within the specified

prefix.

• Progress Reporting: Providing progress reporting during

the merging process would be beneficial for users working

with large datasets, offering transparency into the

operation's status.

By incorporating these recommendations, the Consolidate-csv-

files-from-gcs library can become an even more comprehensive

and user-friendly solution for data engineers working.

References

[1] Google Cloud Platform. [Online]. Cloud Storage

Documentation. Available:

https://cloud.google.com/storage/docs

[2] Pandas documentation [Online]. Available:

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.read_csv.html

[3] A. Chillón, D. Ruiz, J. Molina, & S. Morales, "A model-

driven approach to generate schemas for object-document

mappers", IEEE Access, vol. 7, p. 59126-59142, 2019.

https://doi.org/10.1109/access.2019.2915201

[4] M. Karpathiotakis, M. Branco, I. Alagiannis, & A.

Ailamaki, "Adaptive query processing on raw data",

Proceedings of the VLDB Endowment, vol. 7, no. 12, p.

1119-1130, 2014.

https://doi.org/10.14778/2732977.2732986

[5] E. Siow, T. Tiropanis, & W. Hall, "Sparql-to-sql on

internet of things databases and streams", Lecture Notes

in Computer Science, p. 515-531, 2016.

https://doi.org/10.1007/978-3-319-46523-4_31

[6] G. Burg, A. Nazabal, & C. Sutton, "Wrangling messy csv

files by detecting row and type patterns", Data Mining and

Knowledge Discovery, vol. 33, no. 6, p. 1799-1820, 2019.

https://doi.org/10.1007/s10618-019-00646-y

Paper ID: SR24522151121 DOI: https://dx.doi.org/10.21275/SR24522151121 1865

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://cloud.google.com/storage/docs
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://doi.org/10.14778/2732977.2732986
https://doi.org/10.1007/978-3-319-46523-4_31
https://doi.org/10.1007/s10618-019-00646-y

