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Abstract: Samsun Nahar & Md. Abdul Alim proposed new statistical averaging techniques to solve Multi-Objective Linear 

Programming Problems. The solution of the numerical example by new harmonic averaging technique to solve linear programming 

problem thus obtained from multi-objective linear programming problem claimed by Samsun Nahar & Md. Abdul Alim is not optimal. 

The correct optimal solution of the numerical example is given here. 
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1. Introduction 

 

The research article proposed by the authors Samsun Nahar 

& Md. Abdul Alim (2017), they claimed that new statistical 

averaging techniques provide much better optimized value 

of objective function as compared to other techniques viz. 

Chandra Sen’s technique and statistical averaging techniques 

in the case of multi-objective linear programming problems. 

They converted a multi-objective linear programming 

problem into a single linear programming problem by new 

statistical averaging techniques (new arithmetic, new 

geometric and new harmonic). Then the solution of the 

linear programming problem is recovered by traditional 

simplex method. The authors also cited an example to 

illustrate the developed algorithm. 

 

We noticed the error in the paper at mathematical illustration 

section. We noted that in the numerical example; the optimal 

solution is found in the case of applying new harmonic 

averaging technique as x1 = 4, x2 = 3 with maximum Z = 

9.8593. We believe that the solution Z = 9.8593 given in the 

numerical example is not an optimal solution. We suggest 

that with maximum Z = 9.9164 would be an optimal solution 

in this case. For the validation of our suggested answer, here 

we are solving the linear programming problem thus 

obtained by applying new harmonic averaging technique to 

multi-objective linear programming problem taken by the 

authors in their research article. 

 

2. The Solution 
 

The numerical example taken by Samsun Nahar & Md. 

Abdul Alim (2017) is: 

Maximize  Z1 = x1 + 2 x2 

Maximize  Z2 = x1 + 0 x2 

Minimize  Z3 = - 2x1 − 3 x2 

Minimize   Z4 =  0 x1 − x2 

Subject to,            6x1 + 8 x2  ≤ 48 

          x1 + x2 ≥ 3 

         x1 + 0 x2 ≤ 4 

         0x1 +  x2 ≤ 3 

and                       x1 , x2 ≥ 0 

 

The above multi-objective linear programming problem can 

be converted to a single objective linear programming 

problem from new harmonic averaging technique proposed 

by Samsun Nahar& Md. Abdul Alim as follows : 

 

Max. Z = 
 Zi

r
1 −  Zi

s
r+1

m
 

Where m is the harmonic mean of m1 and m2 i.e.,                  

m =    
2

1

m 1
+ 

1

m 2

 

 

Firstly, we have to find the value of each linear program 

associated with the given constraints by any method 

(Graphical, in the case of having two decision variables 

/Simplex method or by any method available in the 

literature). Here we get optimal point as x1 = 4 andx2 = 3 

for each of the linear program given above. The values of 

each of the objective function at optimal point x1 =
4 andx2 = 3 are as follows: 

Z1  = 10,  Z2  = 4, Z3  = -17, Z4  = -3 

 

Now, m1 is the minimum of absolute objective function 

values among all the linear programs which are to be 

maximized and m2 is the minimum of absolute objective 

function values among all the linear programs which are to 

be minimized in the given multi-objective linear 

programming problem. Here m1 = minimum {10, 4} = 4 and 

m2= minimum {17,3}= 3. 

 

To apply new harmonic averaging technique, we calculate 

the value of m as follows: 

   m =    
2

1

m 1
+ 

1

m 2

    =       =    
2

1

4
+ 

1

3

   = 3.4285 

Now, the reduced linear programming problem from the 

technique of new harmonic averaging technique as follows: 

Max. Z = 
(2𝑥1+2𝑥2+2𝑥1+4𝑥2)

3.4285
 = 

(4𝑥1+6𝑥2)

3.4285
 

 

          = (1.1666)𝑥1 + (1.7500)𝑥2 
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Subject to,  6𝑥1 + 8 𝑥2  ≤ 48 

   x1 + x2 ≥ 3 

   x1 + 0 x2 ≤ 4 

   0x1 +  x2 ≤ 3 

and 𝑥1 , 𝑥2 ≥ 0 

 

We are verifying our suggestion by solving the above linear 

programming problem through various methods given 

below: 

1) Graphical Method 

2) Simplex Method 

3) AHA simplex algorithm 

4) Gauss elimination technique 

5) Modified Fourier elimination technique 

6) The technique adopted by the authors. 

 

2.1 Graphical Method 

 
S.No. Coordinates of point Value of objective function 

1. (3,0) Z = 3.4998 

2. (4,0) Z = 4.6664 

3. (4,3) Z = 9.9164 

4. (0,3) Z = 5.2500 

 

 
 

It can be observed that the optimal solution by graphical 

method is  x1 = 4 , x2 = 3 and the value of corresponding 

objective function is 9.9164. 

 

2.2 Simplex Method 

 

Max. Z = (1.1666)𝑥1 + (1.7500)𝑥2 + 0 𝑆1 + 0 𝑆2 + 0 𝑆3 + 0 

𝑆4 - MA 

Subject to,  6𝑥1 + 8 𝑥2  + 𝑆1 =  48         

          𝑥1 + 𝑥2- 𝑆2+ A=3 

   𝑥1 + 0 𝑥2    + 𝑆3 = 4 

   0𝑥1 +  𝑥2   +𝑆4 = 3 

and  𝑥1 , 𝑥2 , 𝑆1 , 𝑆2 , 𝑆3, 𝑆4 ≥ 0 

The final table of Simplex method is given below: 
 Cj 1.1666 1.7500 0 0 0 0 

CB XB b 𝑥1 𝑥2 𝑆1 𝑆2 𝑆3 𝑆4 

0 𝑆1 0 0 0 1 0 -6 1 

1.7500 𝑥2 3 0 1 0 0 0 1 

1.1666 𝑥1 4 1 0 0 0 1 0 

0 𝑆2 4 0 0 0 1 1 1 

Net Evaluation Row 0 0 0 0 0 1.7500 

 

This is an optimal solution as all the entries of net evaluation 

row is either positive or zero. Optimal solution is 𝑥1 =
4, 𝑥2 = 3 and the value of objective function at this point is 

Max. Z = 9.9164. 

 

2.3 AHA simplex algorithm 

Max. Z =  (1.1666)𝑥1 + (1.7500)𝑥2 

Subject to,  6𝑥1 + 8 𝑥2  ≤ 48 

    𝑥1 +  𝑥2 - 𝑥3 ≤ 3 

       𝑥1 + 0 𝑥2 ≤ 4 

        0𝑥1 +  𝑥2 ≤ 3 

 and     𝑥1 , 𝑥2 ≥ 0 

 

Final AHA simplex table for the above linear programming 

problem is as follows: 

 

𝑥1 

0 

𝑥2 

0 

𝑥3 

0 

 

≤ 

𝑏𝑖  
9.9164 

0 0 0 ≤ 0 

1 0 0 ≤ 4 

0 0 1 ≤ 4 

0 1 0     ≤ 3 

 

Now, it can be observed that all the coefficients of  

xj  in the objective inequality is either zero or positive. 

Therefore, this is an optimal solution. The optimal solution 

occurs at x1 = 4, x2 =   3 with Maximum Z = 9.9164. 

 

2.4 Gauss Elimination Technique 

 

Max.  

Z - (1.1666)𝑥1  - (1.7500)𝑥2 ≤ 0 

Subject to  6𝑥1 + 8 𝑥2  ≤ 48 

                                           −  𝑥1 − 𝑥2  ≤ −3 

        𝑥1 + 0 𝑥2 ≤ 4 

       0𝑥1 +  𝑥2 ≤ 3 

            −𝑥1 ≤ 0 

            −𝑥2 ≤ 0 

After first stage of elimination, we get 

-1.000514315 𝑥2 + 5.143151037 Z ≤ 48 

.500085719 𝑥2 - .857191839 Z ≤ -3 

- 1.500085719 𝑥2 + .85719839 Z ≤ 4 

1.500085719 𝑥2-  .85719839 Z ≤ 0 

𝑥2  ≤ 3 

−𝑥2  ≤ 0 

After second stage of elimination, we have 

Z ≤ 12.2507 

Z ≥ 9.9164 

Z ≤ 10.4993 

Z ≤ 9.9164 

Z ≥ 9.3328 

It is obvious that Max. value of Z is 9.9164 which satisfies 

all the above inequalities. Hence, max. Z = 9.9164. Now, we 

can find the values of remaining variables by back 

substitution. The values of 𝑥1  and 𝑥2  are 4 and 3 

respectively. 

 

2.5 Modifed Fourier Elimination Technique 

 

Max.    Z - (1.1666)𝑥1  - (1.7500)𝑥2 ≤ 0 

Subject to    6𝑥1 + 8 𝑥2  ≤ 48 

−  𝑥1 − 𝑥2  ≤ −3 

𝑥1 + 0 𝑥2 ≤ 4 

                 0𝑥1 +  𝑥2 ≤ 3 

−𝑥1 ≤ 0 
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−𝑥2 ≤ 0 

After eliminating 𝑥1 , the above inequalities reduce to 

-1.1672𝑥2 + 6 Z ≤ 55.9968 

𝑥2≤ 15 

𝑥2≤ 3 

𝑥2≤ 6 

−𝑥2≤  0 

After eliminating 𝑥2 , the inequalities reduce to  

Z ≤ 12.2508 

Z ≤ 9.9164 

Z ≤ 10.5 

0  ≤ 15 

0 ≤ 3 

0  ≤ 6 

 

Out of these, Z = 9.9164 is the only value which satisfies all 

the inequalities altogether. By putting this value of Z and 

with the help of back substitution, one can get the values of 

remaining variables as 𝑥1 = 4 and 𝑥2 = 3. 

 

2.6 AHA simplex algorithm solution for the example 

adopted by S Nahar & Md. Abdul Alim 

 

Max. Z = (1.1599)𝑥1 + (1.7399)𝑥2 

Subject to  6𝑥1 + 8 𝑥2  ≤ 48 

       𝑥1 + 𝑥2 - 𝑥3 ≤ 3 

𝑥1 + 0 𝑥2 ≤ 4 

0𝑥1 +  𝑥2 ≤ 3 

and    𝑥1 , 𝑥2 ≥ 0 

 

Final AHA simplex table for the above linear programming 

problem is as follows: 

 

𝑥1 

0 

𝑥2 

0 

𝑥3 

0 

 

≤ 

𝑏𝑖  
9.8593 

0 0 0 ≤ 0 

1 0 0 ≤ 4 

0 0 1 ≤ 4 

0 1 0 ≤ 3 

 

Now, it can be observed that all the coefficients of  
𝑥𝑗  in the objective inequality is either zero or positive. 

Therefore, this is an optimal solution. The optimal solution 

occurs at 𝑥1 = 4, 𝑥2 =   3 with Maximum Z = 9.8593. 

 

3. Conclusion 
 

By all these methods, we obtained the optimal solution as 

x1 = 4 and x2 =  3 with Max. Z = 9.9164. Hence earlier 

solution given by Samsun Nahar & Md. Abdul Alim (2015) 

with maximum Z = 9.8593 is not optimal. A tabular 

presentation is given to make a clear view of all the 

techniques used to distinguish the value of objective 

function.  

 
Technique Graphical 

technique 

Simplex 

technique 

AHA Simplex 

technique 

Gauss elimination 

technique 

Modified Fourier 

elimination technique 

By S Nahar & 

Md. A Alim (2017) 

Optimal Point x1 = 4, 
x2 = 3 

x1 = 4, 
x2 = 3 

x1 = 4, 
x2 = 3 

x1 = 4, 
x2 = 3 

x1 = 4, 
x2 = 3 

x1 = 4, 
x2 = 3 

Value -objective function 9.9164 9.9164 9.9164 9.9164 9.9164 9.8593 
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