
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Demystifying Salesforce Flows: The Path to 

Streamlined Automation 
 

Raja Patnaik 
 

Email: raja.patnaik[at]gmail.com 

 

 

Abstract: Salesforce Flows provides powerful capabilities for automating complex business processes within the Salesforce platform. 

To ensure that these automations are effective, maintainable, and scalable, it's essential to adhere to a set of best practices and design 

patterns. This includes understanding the business requirements, keeping solutions simple but modular, optimizing Flows for bulk 

operations, using descriptive naming conventions, avoiding hardcoding of values, implementing robust exception handling, and 

thoroughly testing in a sandbox environment before deployment. Regular documentation, performance monitoring, and adherence to 

security guidelines are not just additional tasks but critical components of maintaining efficient Flows. These tasks, along with the use of 

Salesforce design patterns such as modular design, decoupling, asynchronous processing, and stateless execution, play a key role in 

creating reliable and performant automation solutions. By following these guidelines, Salesforce administrators and developers can create 

Flows that are robust, user - friendly, and aligned with organizational goals, thereby maximizing the platform's potential to streamline 

operations and contribute to business success. [1] [2] 

 

Keywords: Salesforce Flows, Automation, Scalability, Process Automation, Bulkification, Scalability, User Experience 

 

1. Introduction  
 

Salesforce Flows for automation is a robust feature of the 

Salesforce platform that allows businesses to automate 

complex business processes without needing detailed coding 

knowledge. Using Salesforce Flow, administrators and 

developers can design, build, and implement workflows that 

automate tasks across various departments and functions.  

 

With Salesforce Flow, users can create guided experiences 

called Screen Flows. These flow through a series of steps, 

such as data entry or user decisions. Auto - launched Flows 

also run in the background in response to specific triggers or 

events within Salesforce.  

 

By leveraging the declarative interface, Salesforce Flows 

offers a streamlined way of automating processes, fostering 

collaboration between admins and developers to create 

efficient workflows. These Flows are adept at handling a 

wide range of automation tasks, from simple data updates to 

intricate business logic, promising significant efficiency 

gains.  

 

By implementing Flows, organizations can streamline data 

display, collection, and processing, reduce manual errors, 

improve customer experiences, and ultimately drive growth 

and efficiency within their business operations. [3] [4] 

 

1) Overview of Salesforce Flows for Automation 

Salesforce Flows is a no - code automation feature within the 

Salesforce platform that enables admins and developers to 

automate complex business processes. It's a user - friendly 

tool that allows you to create workflows triggering specific 

actions based on defined criteria, manage data operations, 

and integrate with various Salesforce objects and external 

systems. The key components of Salesforce Flows are:  

• Triggers: Determine when the Flow should start, such as 

when a record is created, updated, or at a specific time.  

• Elements: Building blocks such as actions, logic, and 

data operations that define what the Flow does.  

• Variables: Used to store and manipulate data within the 

Flow.  

• Connectors: Links between elements that define the 

sequence and logic of operations.  

• Screens: User interfaces that can gather input from users 

within a Flow.  

 

Learning Salesforce Flows, with its thoughtful planning and 

adherence to Salesforce's best practices, can lead to 

significant time and effort savings. By automating complex 

tasks, reducing manual work, and enhancing the overall 

efficiency and accuracy of your business processes, you can 

unlock a new level of productivity and effectiveness.  

 

2) Types of Flows in Salesforce 

Salesforce Flow encompasses various types of Flows, each 

designed to handle different automation scenarios:  

a) Screen Flows: These Flows present a user interface to 

guide users through screens for data entry and display. 

Screen Flows are interactive, and user driven.  

b) Record - Triggered Flows: Automatically run after a 

record is created, updated, or deleted. They can be used 

to automate business processes that need to occur 

immediately following a record change.  

c) Auto launched Flows: These are invoked by processes, 

Apex classes, REST API, and more. They don't have a 

user interface and can be used for complex logic that 

runs in the background.  

d) Platform Event - Triggered Flows: Initiate when a 

platform event occurs and help orchestrate actions 

within Salesforce or other connected systems.  

 

Each type of Flow serves a specific purpose, from interacting 

with the user to automating business logic in the Salesforce 

environment. By combining these different Flows 

appropriately, organizations can automate various business 

processes to enhance efficiency and productivity. [3] [5] 

 

 

 

 

Paper ID: SR24529180828 DOI: https://dx.doi.org/10.21275/SR24529180828 1944 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3) Salesforce Flow Capabilities 

Within the Salesforce ecosystem, Salesforce Flow is a 

versatile tool that allows for creating complex business logic 

and the automation of various tasks.  

 

The capabilities of Salesforce Flow are as follows:  

 

Data Management: Salesforce Flows can create, read, 

update, and delete Salesforce records, allowing for complex 

data manipulation and maintenance.  

 

Process Automation: With Salesforce Flow, you can 

streamline multi - step business processes. Whether it's 

guiding users through workflows or running automated tasks 

in the background, Salesforce Flow is your go - to solution.  

 

User Interaction: Design interactive experiences with 

Screen Flows that can prompt users for information or 

provide guided assistance.  

 

Integration: Configure Flows to make callouts to external 

systems, thereby extending automation beyond Salesforce.  

 

Custom Logic: Unleash the power of formula expressions 

and conditional logic with Salesforce Flow. Build 

automation solutions that perfectly align with your unique 

business rules.  

 

Decision Making: Flows can include elements that route 

logic based on evaluating specific criteria.  

 

Looping: Iterate over collections of records and perform 

batch processing. [5] [6] [3] 

 

4) Lightning Web component inside a flow 

Lightning Web Components can be incorporated into 

Salesforce screen flows to create a more dynamic and 

interactive user experience. Placing a custom LWC inside a 

screen flow enables admins and developers to utilize web 

standards - based components to extend the functionality of 

their flows beyond what's available with standard screen 

components.  

 

When you include an LWC in a screen flow, you can:  

 

Gather Input: LWCs can present input fields in a more 

flexible format than what standard flows.  

 

Display Data: Present data fetched from Salesforce or third 

- party services in a highly customized manner.  

 

Create Interactive Elements: Develop more interactive 

experiences with elements like sliders, maps, rich text 

editors, or complex data tables.  

 

Process Data: Complex processing and validation are 

performed on the client side before the data is submitted to 

the server.  

 

To add an LWC to a screen flow:  

Develop your LWC to meet the intended functionality and 

ensure it is "lightning__FlowScreen" target aware to be used 

in flows.  

Add the LWC to the flow by dragging the custom component 

onto the Flow canvas within the screen element.  

 

Configure the component's properties, including input 

variables, output variables, and other configuration settings 

specific to your component.  

 

Using available configuration attributes to pass data in and 

out ensures seamless communication between your LWC 

and the flow.  

 

 
Figure 1: Flow Configured in LWC “. js - meta. xml” file 

 

After dragging the component into the Flow Builder Screen, 

you can modify the values of the exposed properties.  

 

 
Figure 2: Lightning Web Component inside Flow 

 

It's important to note that special considerations must be 

made when designing LWCs for screen flows, such as 

handling component resizing, maintaining the state between 

screen navigation, and following best practices for 

component development. By leveraging LWCs in screen 

flows, you can enhance the user interface, create more robust 

user interactions, and extend the power of Salesforce 

automation.  

 

5) Salesforce flows vs Apex 

Salesforce Flows and Apex represent two distinct ways to 

implement business logic automation within the Salesforce 

platform, each with its own use cases, advantages, and 

limitations.  

 

Salesforce Flows:  

 

Declarative: Flows are built using a drag - and - drop 

interface and do not require writing code, making them more 

accessible for administrators and "citizen developers. " 

 

User Interface: Flows can have user - facing screens to 

collect information or provide feedback directly within the 

flow.  

 

Limited Complexity: Best suited for less complex business 

logic that can be accommodated by the standard elements 

and actions provided by the Flow Builder.  

 

Governance Limits: Flows must operate within the 

governor limits for flows but are generally less strict than 

those for Apex triggers.  

Paper ID: SR24529180828 DOI: https://dx.doi.org/10.21275/SR24529180828 1945 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Ease of Use and Maintenance: Flows are generally easier 

for non - developers to understand and maintain, and 

changes can be made relatively quickly.  

 

Apex: Apex is a strongly typed, object - oriented 

programming language that enables developers to write 

complex business logic that is not possible with declarative 

tools.  

 

Flexibility and Control: Apex offers greater control, such 

as the ability to interact with more than one object type, 

access all the records affected by a trigger, execute complex 

transformations and calculations, and perform operations 

outside the scope of declarative tools.  

 

Testing and Deployment: Apex requires unit tests with at 

least 75% code coverage, which encourages more robust and 

error - free code and means a longer development cycle and 

more complex deployment process.  

 

Governance Limits: Apex code must be written carefully 

to adhere to strict governor limits enforced per transaction.  

 

Scalability: Apex can be more scalable and can handle high 

volumes of data and complex operations better than Flows 

when written with nullification and efficient resource 

management in mind.  

 

When deciding between Salesforce Flows or Apex, there are 

several factors to consider. These factors include the 

complexity of the automation, the team's skill set, the need 

for a programmatic versus declarative solution, and the 

maintenance implications.  

 

For simple to moderately complex business logic that does 

not require custom user interface work, Salesforce Flows are 

often sufficient and more efficient to implement. On the 

other hand, if the task requires fine - grained control, data 

manipulation, extensive logic, or if Flows reach their 

limitations, Apex is the preferred solution. [2] 

 

6) Enhancing Backend Processes with Salesforce 

Automation 

 

Salesforce automation improves backend processes by 

reducing errors and speeding up workflows by minimizing 

manual intervention. Essential Salesforce automation tools 

include Flows, Process Builders, and Workflow Rules. 

These tools empower organizations to construct complex 

business logic, update fields, create records, send emails, and 

more whenever specific criteria are met.  

 

Salesforce Flows offers a versatile approach to automation 

with capabilities for intricate processes that may involve 

branching logic, user interactions, and integrations with 

external systems. They provide the following advantages for 

enhancing backend processes:  

 

Process Standardization: Ensures consistent execution of 

business operations, enhancing data integrity and reliability.  

 

Efficiency Gains: Automating repetitive tasks can save 

significant time and help employees focus on more critical 

activities that add value to the organization.  

 

Error Reduction: Limits the potential for human error by 

programmatically handling data transactions and logic.  

 

Dynamic Responses: Adjusts to real - time data changes, 

making backend processes more reactive to current business 

conditions.  

 

Data Synchronization: Maintains a unified data state across 

multiple systems, which is essential for accurate reporting 

and decision - making.  

 

To fully leverage Salesforce automation, it is vital to follow 

the best practices, such as thorough testing, proper error 

handling, and staying updated with Salesforce's continuous 

platform enhancements. This structured approach to 

automation can significantly optimize backend operations, 

leading to increased productivity and improved overall 

performance of the Salesforce ecosystem.  

 

7) Use cases for Salesforce Flows 

Salesforce Flow can be used across many business scenarios, 

offering flexible automation solutions that save time and 

increase productivity.  

 

Here are some everyday use cases:  

 

Customer Onboarding: Streamlining the process of 

bringing new customers into your system by collecting 

necessary information, setting up accounts, and initiating 

welcome sequences.  

 

Lead Management: Automatically routing new leads to the 

correct sales representative based on specific criteria such as 

geographic location or product interest.  

 

Case Management: Assigning and escalating support cases 

to the right agents based on severity, customer value, or area 

of expertise.  

 

Order Processing: Triggering complex processes for order 

validations, inventory checks, and invoice generation when 

a new order is placed.  

 

Employee Onboarding: This involves guiding HR 

departments through a step - by - step process to gather new 

hire information, assign resources, and set up necessary 

training.  

 

Record Trigger Business Processes: Reacting to changes 

in Salesforce records by triggering automated processes like 

updating related records or calculating fields.  

 

Survey Follow - Up: After completing a customer survey, 

automate follow - up tasks based on the rating, such as 

reaching out to a dissatisfied customer or rewarding a 

promoter.  

 

Paper ID: SR24529180828 DOI: https://dx.doi.org/10.21275/SR24529180828 1946 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Event Responses: Using flows to respond to platform 

events, such as system outages or service interruptions, by 

notifying teams or executing recovery protocols.  

 

Salesforce Flows are tremendously versatile and can be 

tailored to fit various workflow complexities. They help 

businesses automate processes and make operations more 

efficient.  

 

 
Figure 3: Flow to Approve a Deal 

 

Salesforce Flow Best Practices and Standards 

To ensure that your Salesforce Flows are efficient, 

maintainable, and scalable, follow these best practices and 

standards:  

a) Understand Business Requirements: Clearly define 

what you want to achieve with your Flow before you 

start building.  

b) Optimize for Bulk Operations: Make sure your Flows 

can handle many records simultaneously without hitting 

Salesforce governor limits.  

c) Use Descriptive Naming Conventions: Name your 

Flows, variables, and elements so other developers or 

admins can easily understand their purpose.  

d) Avoid Hard - Coding IDs: Use metadata types, custom 

settings, or formulas to avoid hard - coding record IDs 

or other values that may change.  

e) Modularize Your Flows: Break complex automations 

into smaller, reusable components whenever possible.  

f) Handle Exceptions Gracefully: Include error handling 

and fault paths to manage exceptions properly.  

g) Test Thoroughly: Test your Flows in a sandbox 

environment before deploying them to production.  

h) Add Comments and Descriptions: Document your 

Flow's purpose, logic, and any complex parts within the 

configuration to make it easier for others to understand 

and maintain.  

i) Control Data and Process Visibility: Use the least 

privilege principle to ensure Flows do not inadvertently 

expose sensitive information.  

j) Monitor and Review: Regularly check the 

performance of your Flows and optimize as necessary.  

k) Stay Updated: Keep up with Salesforce updates and 

best practices as its platform and features continuously 

evolve.  

l) Consider User Experience: For Flows that include 

screens, ensure that the UI is intuitive and provides a 

seamless experience for the end user.  

m) Deploy With Best Practices: Follow Salesforce's 

recommended deployment practices, including using 

change sets and version control systems and 

maintaining proper environment strategies.  

 

Adhering to these practices helps ensure that the Flows you 

create are reliable, user - friendly, and aligned with your 

organization's overall approach to system architecture and 

data governance. [7] [5] 

 

2. Conclusion 

 

In conclusion, effective use of Salesforce Flows hinges on 

leveraging best practices and familiar design patterns to 

create robust, scalable, and maintainable automation. Key 

takeaways include planning carefully, simplifying designs, 

handling bulk data gracefully, ensuring thorough testing, and 

maintaining good documentation. Furthermore, it's critical 

to stay aware of Salesforce's governor limits, modularize 

where possible, and include comprehensive error handling 

and rollback mechanisms.  

 

By adhering to these principles and utilizing design patterns 

such as decoupling, asynchronous processing, and stateless 

design, Salesforce admins and developers can build Flows 

that meet current business requirements and are adaptable to 

future changes. This strategic approach to Salesforce Flow 

design and implementation ultimately drives business 

growth, enhances efficiency, and improves user experience 

within the Salesforce ecosystem. [8] [3] 

 

References 
 

[1] "Salesforce Flow".2020 

[2] “Getting Started with Salesforce Flow for Developers” 

2020 

[3] "Salesforce Launches New Low - Code Tools on the 

Lightning Platform Empowering Teams to Collaborate 

and Build Apps Fast".2018 

[4] A. Bose, "Lightning Flow: Process Automation for 

Every App, Portal, and Experience".2018 

[5] "Get Started with Business Process Automation".2020 

[6] "Automate Your Business Processes with Salesforce 

Flow".2020 

[7] "Flow Builder Basics".2020 

[8] "Approve Records with Approval Processes".2020 

[9] M. Gentzkow and J. M. Shapiro, "Code and Data for 

the Social Sciences: A Practitioner's Guide".2014 

[10] "AI in Marketing: 14 Early Use Cases".2017 

Paper ID: SR24529180828 DOI: https://dx.doi.org/10.21275/SR24529180828 1947 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



