
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Automated Testing Framework for Functionality of

Configuration of Complex Modern Architectures

Ankit Chandankhede

Abstract: Modern compute architectures have been architected to be scalable for different applications such as low power chips for

mobile, wearable devices and high-performance chips for servers and scientific computers. The scalability and configurability of

architecture and features [3] are controlled by the register writes through firmware and parameters to scale the design for instancing

multiple pipelines or cores or cache size. Further register writes are also used for fallback option if a feature or fix does not function as

expected. Hence verifying the register writes to enable such feature crossing with different design parameters becomes paramount of

interest. The number of registers and combinations of parameters grows exponential for such architectural complexities. Thus,

verification cycles can prolong and time to production can be exponentially large. This paper proposes an automated approach to

randomly test the register combinations through stimulus along with design parameters by parsing feature and register documentations.

Keywords: scalable architectures, low power chips, high performance chips, register verification, automated testing

1. Introduction

Growing applications of chips and computer architecture has

significantly increased the complexity of architecture

because of new feature, scalability and configurability. In

modern chip design, an architecture is thought to be designed

to scalable for different applications and features. Design

scalability includes cache sizes, multiple pipelines for same

type of workload such as compute pipeline in a graphics

architecture, multiple core or execution units, instruction

caches and rendering pipelines which can be scaled using

synchronized parametrized design for specific applications

[1] [3]. Features within such architectures are enabled or

disabled through register writes and to process same type of

workload to throttle the performance or often improve the

depth of processing units. Such parameterized and features

complexity can be bug prone and often are developed with a

fallback option which is again controlled through register

writes. With this architectural shift, verification strategies

have been changed significantly such that an architecture or

design verification is carried out versus a traditional

approach of verifying a design with single application point

of view. Thus increasing the complexity of the verification.

Currently verification of perceived functionality of register

read and write operation along with feature has been added

on top of the scalability of the architecture or design and

hence permutation of scenarios have exponentially exploded

and hence random or directed testing is not sufficient.

Further certain registers in design are write or read only

registers which are traditionally test through Register

Abstraction Layer in UVM or normal stimulus of

Systemverilog [4]. However, doesn’t provide the coverage

metric for register testing.

This paper addresses the issues of verifying these larger set

of combinations through automated register configuration

constraints and parameters of design by parsing the design

and architectural documentation using script. These

constraints thus can be used on top of the existing testcases

which allows reusability and scalability of current test suites.

Further script also defined the automated cover points for

each register crossing with design parameters to provide

quality metric of testcases which is currently a manual

process and has longer feedback loop for the validity of the

register combinations and design parameters, may result in

prolonged verification cycle.

2. Current Verification Methodology

Current methodology for verification of any feature

including register is defined as below

a) Starts with testplanning by reading the architectural and

design definitions of feature or registers and testplanner

draws out scenarios to be verified. This step is prone to

human error and skip over a major scenario to be

verified.

b) Manually developing the test sequences for each

scenario and developing coverpoint through painstaking

manual process

c) Analyzing functional coverage and converging on non

hit coverpoint can be protracting.

d) Unrealized coverpoint may result in silicon bugs

Different type of registers makes the presilicon verficiation

even harder. Following are the type of verification

extensively occurs at Unit level

1) Functional Verification

• Functional verification includes the register write and

reads and testing the properties of the registers as write

only, read only or write and read permitted along with

reserved fields and hence it is important to test the

decoder by error injecting or attempt to write a read only

register and vice versa.

• Fault Injection and Reliability Testing

• While writing into the registers from AXI interface,

error could be injected while writing into the registers to

test the decoding

2) Security Testing

• Attempt to write a register a read only register and vice

versa

• This paper extensively cover the automated framework

for functional verification

• Performance testing:

• Moreover, the test framework mentioned in this paper

can also be applied to performance test counters and

hence covering Performance Testing

Paper ID: SR24730214710 DOI: https://dx.doi.org/10.21275/SR24730214710 1576

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Stress Testing

• Test framework can be scaled to multiple write or read

with each byte enable and data clusters such double

word or word or partial write of registers

Other type of testing can be tested based on the temperature

or voltage variation that would dappen the clock or register

state itself and testing frameworks for such verification or

validation are beyond scope of this paper.

• Burn - in Testing - Is beyond scope of this paper.

• Penetration Testing**: Attempting to exploit potential

vulnerabilities to assess security robustness.

• Side - channel Analysis

• Electromagnetic Interference (EMI)

• Voltage and Clock Manipulation

Figure 1: Shows the traditional cycle of presilicon verification

3. Proposed Automated Testing Framework

Aforementioned challenges are address in this paper unique

approach by automating testing framework and effectively

reducing the verification efforts on testing combination of

registers along with different features and configurations.

Approach is devised by a script to parse the architectural and

design documentation in specific format to understand the

register information and parameters of design for each

product to derive stimulus with constraint of registers and

parameters. This approach allows legal combinations to be

applied on pre - existing testcases. Thus brings the testcase

suite quality, scalability and portability to different DUTs.

These constraints of registers are derived in SystemVerilog

and files of these constraints can be easily included in any

stimulus, promoting portability across DUTs from IP to SoC.

Thus, reducing the similar implementation of test setup across

DUTs. Additionally, if the unified register/RAL model is used

by all DUTs, the stimulus of register testing can be ported at

any DUT.

Further testing of registers is complemented by functional

cover point which are automatically generated based off the

constraint derived by scripts and thus engineering effort for

coding of the cover point is saved.

Proposed approach is providing end to end approach of

verification of register and design parameters using existing

testcases and helps reduce human error on determining

critical scenarios and covers cross coverage of registers with

parameters.

Paper ID: SR24730214710 DOI: https://dx.doi.org/10.21275/SR24730214710 1577

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Implementation Details

The implementation of the automated testing framework

involves:

Script Development:

Script is used to parse architectural documents and derive the

constraints in a tabular form as mentioned below for HVP

mapping and constraint mapped internally by script are

utilized to create the SystemVerilog/UVM constraints and

generate the stimulus to either write or read the register using

RAL or direct stimulus on register interface of a unit.

• Automated HVP mapping created by Script

Table created by script

Table 1: HVP mapping for register coverpoint

Register name Register field IP Width
Read/Write

permissions

Valid

values
Cross valid Default values

A_register A_len Cache 4 Write only 0 - 10
A_type_security 0 - 7

B_type_security 0 - 4
0

Error_register Context_id_err Cache 7 Read only 0 - 127 0

Security_register A_type_security Cache Controller 1 Write & read 0 - 1 0

Security_register B_type_secuirty Cache Controller 1 Write & read 0 - 1 0

Table 1. shows the name of IP (cache / cache controller) with

register name with its register fields, its width, permission of

register field, valid values and the constraint if there is cross

dependency on registers and its values expected.

For example: A_len is a register field of A_register from IP

name “Cache” which has width of 4, is write only with valid

value of 0 - 10 but valid value is 0 - 7 if A_type_security

register field is set and 0 - 4 if B_type_security_register is set.

• Automated generated SystemVerilog and UVM

constraints

Although UVM framework provide the register stimulus

however does not constraint across the units and register map.

The same script uses the map created on possible values of

the registers to create SystemVerilog or UVM constraints for

each IP as follows:

Following code shows the constraint generated by the script

based on the register mapping and property per Unit.

class cache_register;

rand bit [3: 0] A_len;

rand bit [6: 0] context_id_err;

constraint A_len_c {

 A_len inside { [0: 10]};

}

constraint context_id_err_c {

 context_id_err inside { [0: 127]};

}

endclass

class cache_controller;

rand bit A_type_security;

rand bit B_type_security;

constraint A_len_c {

 A_type_security inside { [0: 1]};

}

constraint context_id_err_c {

B_type_security inside { [0: 1]};

}

endclass

Following code shows the cross constraint generated by the

script based on the register mapping and property across the

DUT.

class cross_dut_register;

 rand bit [3: 0] A_len;

rand bit [6: 0] context_id_err;

rand bit A_type_security;

rand bit B_type_security;

constraint cross_A_len {

 solve A_type_security before A_len;

 solve B_type_security before A_len;

 if (B_type_security) { A_len inside { [0: 3]}; }

 else if (A_type_security) {A_len inside { [0: 7]}; }

 else { A_len inside { [0: 10]}; }

 }

Endclass

Stimulus generation

These constraints are used in stimulus of SystemVerilog or

UVM sequence are used to test registers with following type

of sequences

1) Check if the default value of the register is as expected

after the reset

2) Double word or word is written by selective byte enable

(partial) writes and the values are reflecting as expected

using a read after write sequence.

3) Register writes are followed by reset of IP or unit and

read back the register values of register to be either

default value for resettable registers and to be the same

value as previously written value for non resettable

registers.

4) Cross register constraints are used in the DUT while

enabling features across the units. These constraints

provides an effective way of integrating on top of any

testcase and thus promoting the scalability of the

testcases and allowing different combinations of registers

to be automatically created.

This technique has eliminated the effort to create different

stimulus to enable a feature and cross with other features

across Units and thus improving coverage by 70%.

Automated Register Functional Coverage

Script further generates the coverpoint based off of these

constraints to complement the HVP mapping as well as

stimulus generated. Thus reducing the effort of coding

coverpoints and complementing the test framework with

functional coverage metric. Although UVM framework

provides the coverage at transaction level, however they are

Paper ID: SR24730214710 DOI: https://dx.doi.org/10.21275/SR24730214710 1578

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

also possible to analyzed through code coverage. Current

Methodologies doesn’t provide the cross but coverage for

registers which may have dependency across Units and hence

this automated approach based off the prior table 1 mapping

provides a unique opportunity to automate coverage creating

and provide comprehensive DUT view.

Following automated coverages are created by script based

off prior mapping and shows the crossing of A_len and type

of security enabled in DUT.

 covergroup A_len_group;

 A_len_c: coverpoint A_len { bins A_len_bin = { [0: 10]}; }

 context_id_c: coverpoint context_id_err { bins

context_id_err_bin = { [0: 127]}; }

 A_len_cross_context_id: cross A_len_c, context_id_c;

 A_type_security_c: coverpoint A_type_security { bins

A_type_security_bin = { [0: 1]}; }

 B_type_security_c: coverpoint B_type_security { bins

B_type_security_bin = { [0: 1]}; }

 A_type_security_cross_A_len_c: cross A_type_security_c,

A_len_c;

 B_type_security_cross_A_len_c: cross B_type_security_c,

A_len_c;

 endgroup

5. Benefits and Future Directions

Automated framework modelled by a script is providing end

to end verification of registers testing along with feature

enabling capabilities across DUT.

a) Efficiency:

Automated approach has eliminated register code

coverage, testplanning, HVP, test constraints and

stimulus generation, which is cumulatively accelerating

the verification process.

b) Accuracy:

Since the script is parsing the architectural definition of

the feature or registers and extracting the dependencies

of the register, is further improving the quality of the test

plan and removing chance of the human error.

c) Scalability:

Since the constraint generated by script are across the

DUT, it can be applied to existing test sequences and

hence allowing the scalability. Proposed frameworks can

be scaled to different architectures and DUT level of

verification.

d) Future Enhancements:

Feature enabling has different stages such as overall

system level testplanning, coverage coding, generation of

test stimulus for data flow, data integrity checks,

convergence of code and functional coverages. This

paper only cover the register testing part of verification

education and can be scaled similar to other verification

strategies.

6. Conclusion

End to end testing through this automated testing framework

proposed in this present provides significant improvement in

reducing verification cycle for register testing, enabling

features and provides path ahead for improvements in

verification process. Frameworks capability to scale to

diverse complex architecture including Graphics, CPU and AI

accelerators and provides This approach not only reduces

project timelines but also improves the overall quality and

reliability through automated register constraints and scaling

constraints on existing testcase and provides a

complementing metric of functional coverage. This

framework can be further scaled to protocols such AXI and

AMBA protocols [6] and thus reducing the verification effort

even further.

References

[1] Matthieu Tuna and Mounir Benabdenbi “Software

Based Self - Test of Register Files in RISC Processor

Cores using March Algorithms”

[2] Jaume Abella Pedro Chaparro Javier Carretero Jaume

Abella “End - to - end register data - flow continuous

self - test”

[3] C. Ebeling; D. C. Cronquist; P. FranklinConfigurable

computing: the catalyst for high performance

architectures

[4] Verification academy general “RAL in UVM: https:

//verificationacademy. com/verification - methodology

- reference/uvm/docs_1.1b/html/files/reg/uvm_reg -

svh. html

[5] AXI and AMBA protocol https: //developer. arm.

com/documentation/ihi0022/latest/

Paper ID: SR24730214710 DOI: https://dx.doi.org/10.21275/SR24730214710 1579

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/profile/Matthieu-Tuna-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Mounir-Benabdenbi?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Jaume-Abella-9170161?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Pedro-Chaparro-35126788?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Javier-Carretero-69698510?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Jaume-Abella-9170161?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Jaume-Abella-9170161?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://ieeexplore.ieee.org/author/37284732400
https://ieeexplore.ieee.org/author/37283982000
https://ieeexplore.ieee.org/author/37089041082
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/reg/uvm_reg-svh.html

