
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Web Applications Performance with

Java: Best Practices

Pavan Kumar Joshi

Fiserv, USA

Email: pa1n12[at]gmail.com

Abstract: In the era of pervasive computing, the demand for high - quality web applications has surged, prompting developers to adopt

robust frameworks and programming languages. This paper explores the significance of Java in web application development,

emphasizing its reliability, portability, and object - oriented nature. By leveraging Java's features, developers can create scalable

applications that meet evolving customer and business requirements. We discuss the architectural principles of web applications, as an

example focusing on the performance implications of adopting a 3 - Tier architecture using Java technologies such as Servlets, JSP, and

AJAX. Furthermore, we analyze factors affecting web application performance, including user experience, server capabilities, network

conditions, and database efficiency. The insights provided in this paper aim to guide developers in optimizing web applications, ensuring

enhanced user satisfaction and operational effectiveness.

Keywords: Web Application, Optimization, Best Practices, Performance, 3 - Tier Architecture.

1. Introduction

Web application development has recently focused heavily on

a variety of quality - related challenges [1] in response to the

skyrocketing demand for web apps in the age of ubiquitous

and pervasive computing. The intense level of competition in

the online application industry has made developers of web

applications more price - conscious. The ability of a web

application to withstand the ever - evolving demands of both

customers and businesses is a key asset [2].

The development of high - quality web applications is an

arduous and demanding process. To produce high - quality

web - applications, however, one must have the correct

development process, methodologies, tools, and people

behind them. To achieve high - quality web - applications

with a simple, efficient, and resilient development process,

the development platform is crucial since it affects related

development processes, methodologies, tools, and people [2].

For application programming interfaces (APIs) and online

applications, Java has long been a top choice. It is a stable and

trustworthy language that gives programmers access to a

wealth of resources for creating high - performance, scalable

apps. People and companies alike use Java for various

purposes, including chatting, providing services, sharing

content, and much more besides. This includes conversing,

providing services, exchanging materials, and much more.

[3] [4]. The Java platform is an open - source, standards -

based, operating system - and hardware - independent

platform for creating and running distributed corporate

applications. Because Java programs do not favour any one

vendor over another, the company is free from vendor lock -

in [2].

A rapid growth of web applications in today's digital

landscape necessitates a focus on performance, scalability,

and user experience. As businesses increasingly rely on

online platforms to meet customer demands, the challenges

associated with developing high - quality web applications

have become more pronounced. This paper is motivated by

the need to explore effective strategies for building robust

web applications using Java, a language known for its

reliability and versatility. By addressing the architectural

principles, performance factors, and best practices in Java

web development, we aim to equip developers with the

insights needed to enhance application efficiency and user

satisfaction. The following paper contributes as:

• Provides a comprehensive overview of Java’s frameworks

(Servlets, JSP, AJAX) that facilitate the development of

high - performance web applications.

• Discusses the advantages of adopting a 3 - Tier

architecture, highlighting its role in separating concerns

and improving scalability and maintainability.

• Identifies and analyzes critical factors affecting web

application performance, including user experience,

network conditions, server efficiency, and code quality.

• Offers practical recommendations for optimizing web

applications through effective database management,

efficient coding practices, and hardware considerations.

• Illustrates the application of theoretical principles with

real - world examples, demonstrating how Java - based

solutions can enhance web application performance in

high - traffic scenarios.

1.1 Structure of the paper

The rest of the paper are organized as: Section II -

introduction overview of java programming language, Then

Section III - performance testing web applications, in section

IV - web applications performance with java: an example,

Section V - analysis of factors affecting web application

system performance, Section VI discussed as literature

review, Section VII provide the best practices for optimizing

web application performance with Java, at last provide the

Conclusion and future work.

2. Overview Of Java Programming Language

Java is a widely used object - oriented, high - level

programming language that may be used to create safe, cross

- platform applications. It has become one of the most popular

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1649

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

languages for online and enterprise application development

since James Gosling of Sun Microsystems introduced it in

1995. With Java's support for the "write once, run anywhere"

(WORA) concept, programs written in Java may run on any

device running the Java Virtual Machine (JVM), independent

of the device's operating system or hardware [5]. The

following seven requirements must be met in order for object

- oriented programming to be considered pure: No.1:

Bequests (2) Data Encapsulation 3. Polymorphism 4.

Decoupling 5. Every type that is predefined is an object.6.

Messages are sent to objects to accomplish all actions.7

Objects are the only type that may be user - defined. Figure 1

displays the JAVA architecture.

Figure 1: Java Architecture [6]

Compilation and Interpretation are the two main steps of the

Java programming language.

• The compiler receives the Java source code.

• It is transformed into byte codes by the Java Compiler.

• The JVM takes the bytes codes and turns them into

machine code.

• It is the machine itself (the operating system) that runs the

code.

Java is not a true object - oriented programming language as

it does not support the #5 requirement. However, it is an

object - oriented programming language. In order to construct

a robust online or mobile application, several technologies

and frameworks make use of object - oriented ideas.

• Java: Java is a platform or language that is safe, well -

structured, object - oriented, and works at a high level.

Given its platform independence, it can be executed in any

software or hardware environment.

• Servlet: Web applications may be developed and

deployed on servers using the Servlet technology, which

is also based on Java. The employment of this technology

is not without its many pros and cons.

• JSP: This is similar to the Servlet technology used to build

web applications, but it adds features like expression

language, JSTL, etc.

2.1 Key Principles of Java

Java has become the most essential programming language in

the era of internet because of its web application environment

and its built - in networking environment [7]. There are five

main principles of Java language listed below as:

• Java is Architecture - neutral and portable: Java's

universal byte - code simplifies porting. Programs execute

slower than native executables due to the overhead of byte

- code interpretation into machine instructions. Java is

platform - independent. The Java Virtual Machine

converts Java byte - code into the platform's native

machine language.

• Java is simple and object - oriented: Java uses C syntax

and C++ technologies to produce bug - free code and

enhance object - oriented principles. Java eliminates the

most perplexing element of memory allocation and de -

allocation, making it bug - free. Programmers spend less

time on memory allocation and garbage collection since

the JRE does it. The whole thing is object - oriented.

• Java is Robust: Java has efficient memory allocation and

auto garbage collection. It provides superior exception

handling and type checking compared to other

programming languages. Java's compiler and interpreter

check for basic syntactic and semantic problems and run -

time code, making the architecture resilient.

• Java is dynamic, interpreted and threaded; Java is

dynamic because of byte - code (class files). It is dynamic

because it stores all the types needed at runtime to check

and resolve object access rights. Any platform can execute

Java source code. It loads class files during runtime,

therefore anything at runtime is dynamic. Java programs

must be executed using the interpreter since byte - code

runs anywhere. The programs are compiled into byte -

code Java Virtual Machine code. Multithreading allows

multiple tasks to run simultaneously. Multithreading

makes Java powerful. Lightweight multithreaded may do

several tasks simultaneously.

• Java is secure: Java's security paradigm prohibits

fraudulent users by not allowing read or write access to

files or runtime process creation. It uses “sandbox” to

protect users against malicious programs downloaded

from a network. Java programs can only run in the

sandbox. The JVM checks executable files for malware

and other threats as they are built by the Java compiler

from byte - code in class files.

3. Performance Testing Web Applications

Web apps are often recognised as the foundational elements

of standard SOA applications. Web application components

are crucial to the operation of such an application system.

People who use the Internet often engage with websites, and

a lot of those websites are dynamic. These websites don't only

provide static web pages; they create content according to

user demands. Figure 2 indicates that these dynamic websites

are more accurately referred to be Web Applications

Architecture because of the flexibility and interaction they

provide [8].

• Client tier (the browser) - displays data that has been

requested.

• Presentation layer, also known as Middle Tier or

Application Server (the Web server): manages the

business logic and provides client (s) with data.

• The database server, which is part of the data storage layer,

is responsible for storing the system's data in a relational

database.

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1650

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Web Application Architecture [9]

A web application performance testing tool's main function is

to simulate user load [4]. The number of concurrent users

accessing the program under test is a measure of load. Their

status as "virtual users" stems from the fact that the testing

instrument just mimics their actions. One real person using

the app is symbolized by each virtual user [3].

4. Web Applications Performance With Java:

An Example

In this example, the web application is designed based on a 3

- Tier architecture, replacing the existing 2 - Tier

Client/Server (C/S) model. The application leverages Java

open - source libraries such as Struts, ibatis, and Ajax,

enabling ease of development and maintenance. The main

goal is to combine the user - friendly interface of C/S models

with the flexibility and scalability of a web - based system.

This new architecture enhances development efficiency,

reduces maintenance efforts, and improves the overall user

experience [10].

Figure 3: Web Applications Performance with Java

Here’s figure 3 representation of the architecture for

optimizing web application performance with Java. It

illustrates the 3 - Tier architecture, highlighting the Client

Layer, Application Layer, and Database Layer, along with

supporting components like directories and libraries. Each

layer is organized to show the specific roles and components

involved in the system, providing a clear view of how the

application is structured. The each steps of web application

development with Java discussed below:

4.1 Directory Structure

The directory structure organizes the web application into

multiple components, each serving a specific role:

• Properties Directory: Contains environment configuration

files for the web application.

• Source Directory: Holds Java business logic files that are

critical to application functionality.

• Web Page Directory: Stores static content like HTML,

JavaScript, and images, ensuring a clean separation

between presentation and business logic.

• WEB - INF Directory: This is where servlets, JSP files,

and related classes reside. It is secured from direct URL

access, protecting critical logic from external threats.

• Classes Directory: Contains servlet classes, JavaBeans,

and other related files, facilitating modular and

maintainable code.

• lib Directory: Stores necessary external libraries, in

compressed formats like. jar or. zip.

• XML Directory: Holds SQL Data Manipulation Language

(DML) statements used within the web application,

separating them from Java or JSP code for easier

management.

4.2 Web Application Whole Process

The web application employs an Ajax - driven process,

enabling asynchronous requests for efficient data

communication between client and server. The steps are as

follows:

• User Request via JavaScript: A user initiates a request

through a JavaScript function, which then communicates

with the web server via the Ajax engine.

• Business Logic Processing: Upon receiving the HTTP

request, the web application server processes the business

logic and communicates with the database server if

necessary.

• XML Data Response: The server returns the processed

result in XML format to the client, ensuring fast data

retrieval and reducing bandwidth usage.

• Callback Function Processing: The XML data is processed

by the callback function in the browser, rendering the

required information for the user.

4.3 Client Process Flow

The client process revolves around presenting dynamic data

and responding to user requests:

• Initial GUI Request: The client requests the graphical user

interface (GUI) using an extended JSTL Custom Tag

Library.

• JavaScript Function Execution: All user requests are

managed by JavaScript functions, which validate and

forward them to the server via the Ajax engine.

• XML Response Parsing: The XML data returned from the

server is parsed and displayed on the client screen using

defined callback functions.

4.4 Server Process Flow

On the server side:

• Loading the Application: The web application is loaded

into memory, where configuration settings and business

logic are prepared using properties files.

• Processing Requests: When a client request arrives, the

server processes it, communicates with the database if

necessary, and sends the result back in XML format.

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1651

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• SQL Handling via XML Controller: SQL queries are

handled via an XML controller that retrieves and executes

SQL statements from XML files, optimizing database

interactions.

4.5 Compile Process Flow

The web application leverages Apache ANT, a Java - based

build tool, to manage the compile process:

• Building with ANT: The build process compiles Java

classes, packages them into. jar files, and moves them to

the appropriate directories within the application.

• Automated Deployment: Once compiled, the libraries and

class files are automatically placed in the WEB - INF

directory, making the deployment process smooth and

efficient.

4.6 SQL Servlet Process

The proposed SQL servlet handles SQL - related requests by

reading SQL DML statements from the XML directory. Key

steps include:

• SQL Parsing and Execution: SQL statements are parsed

based on identifiers (SQL ID) and processed in the

database.

• Multi - SQL Handling: The servlet can manage multiple

SQL queries simultaneously, enhancing efficiency and

reducing the need for multiple servlets.

• XML Response: The result is returned in XML format,

eliminating the need for additional servlets for database

interactions.

4.7 Forward Servlet Process

The Forward servlet is responsible for handling business logic

in JSP files, offering several benefits:

• Efficient Maintenance: Since the business logic resides in

JSPs, changes to the code do not require server restarts,

reducing the risk of service interruptions.

• XML Output: After processing the JSP logic, the servlet

forwards the result in XML format, streamlining the

integration of presentation and business logic.

The described Java - based web application architecture is

designed to enhance performance, scalability, and

maintainability. By utilizing a 3 - Tier model, separating

concerns, and leveraging industry - standard tools like

Apache ANT, the system efficiently manages client requests

and server processing while maintaining a clean, modular

structure.

5. Analysis of Factors Affecting Web

Application System Performance

Taobao and Jingdong are two examples of massive e -

commerce Web applications that immediately spring to mind

when one thinks of high concurrency software. The server

experiences a surge in traffic during the yearly "double

eleven, " leading to issues including poor page response

times, crashes, and commodities that cannot be exchanged.

As a result, the platform's functioning and user experience are

negatively impacted [11].

Thus, it is important to consider potential operational issues

while designing the system, include suitable technologies to

address them, and make it easy to expand and maintain. As a

result, studying what makes the Web application system tick

is essential. It is important to consider the following details

while dissecting the elements that influence the Web

application system's performance [12]:

1) User experience layer

Many issues, like slow system throughput, high rates of front

- end script errors, high rates of asynchronous requests, static

resource 404 errors, and so on, might impact the user

experience when they use a web application. The request will

time out if the requested resource has any of the

aforementioned issues, leading to a sluggish response and an

unpleasant experience for the user. Consequently, we need to

check whether the system has the aforementioned issues.

2) The network layers

A web application's response time is directly proportional to

the bandwidth available on the server's network. In theory,

static resources with a large exit bandwidth should load more

quickly, and the ping command is a good way to check the

communication speed of a network.

3) Server layer

The effectiveness of the system's service is both restricted by

the number of requests that the server can handle and by the

current condition of the server's load. For that reason, it's

important to examine the server's settings and look for any

issues.

4) Code layer

The code's quality also affects the system's speed. The user

experience layer may display a sluggish response or possibly

crash if the system contains several enquiries, such as

multiple nested loop queries. The efficiency of the Java

programming language must, therefore, be considered

throughout optimisation and development.

5) Data storage layer

The database concurrency issue is particularly challenging to

resolve in systems that support high concurrency web

applications. When analyzing the system database's

performance, it's important to zero in on SQL, common

database operations, and the concurrent "dirty read" issue

because of the constraints imposed by locking mechanisms,

concurrency, and SQL statements.

6) Physical hardware layer

Processor and memory - dependent system business

processing mostly reflects this layer.

6. Literature Review

Developers don't have to put in as much effort after

incorporating the framework's numerous pre - built features,

which are provided in the form of jars.

J. Correa et al. (2014), Google App Engine and Google Web

Toolkit are frameworks for building web applications. These

technologies have a specific way of working and certain

limitations that impact the design and functionality of these

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1652

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

apps. On the other hand, they offer great benefits like a more

intuitive interface, faster performance, more scalability, and

the ability to use specific services that make applications

work with different systems [13].

Rajeev BV et al. (2015), shows how developers may use

several strategies to optimise and assess the performance of

mobile web applications at various levels, including HTML,

CSS, and Java script, as well as during deployment. This

article starts with a use case application, sets performance

goals and baselines, and then uses a number of methods to

determine the impact of each method on the application's

performance [14].

Javier Verdú et al. (2016), releases the first study to examine

the scalability of performance in web applications that use

numerous workers in parallel. Here, we focus in on two case

examples that illustrate distinct approaches to worker

execution. The Web Workers API, which is part of the more

modern HTML5 standard, enables the execution of JavaScript

programs on many threads, or workers. Nevertheless, the

inner workings of the browser's JavaScript virtual engine

conceal any direct correlation between the number of workers

and threads operating in the browser and the utilisation of the

processor's logical cores. Consequently, programmers are

clueless about the ideal amount of workers for parallel

JavaScript scripts and how performance really grows across

various settings. We have tested three of the most popular

web browsers and found that performance scales across a

variety of parallel processing microarchitectures. On top of

that, we investigate how web app performance is affected by

running apps simultaneously. These findings have important

implications for future methods that aim to automatically

determine the optimal workforce size in order to maintain

system responsiveness and user experience in the face of

unpredictable changes in system workload, while also

optimising resource utilisation [15].

Peng Li et al. (2017), The goal of their research is to find a

programming language and middleware abstraction that

provides a different way to build client/server web

applications. This approach would help with issues like

component coordination between the client and server, as

well as the flexibility to map components to different physical

locations. In order to circumvent issues with the two

paradigms mentioned in this Introduction, they are

developing a JavaScript interpreter and middleware that

facilitates modular coordination. In this method, developers

would mediate the client - server workflow by writing a

distinct coordination specification. They have changed a

popular open - source web app, Java Pet Store, using my

framework, and then tested it to see whether it has little

performance overhead, all in an effort to establish that my

framework is effective [16].

Yohei Ueda et al. (2017), performed a comparison between

two dynamically compiled languages—JavaScript and

Java—and the widely used statically compiled language Go.

For each of the three languages, we tested three different

implementations of the Acme Air benchmark. Following

some minor tweaks to the server settings, our experiments

showed that the Go code outperformed the JavaScript and

Java implementations in terms of throughput, with the former

achieving a 3.8x increase and the latter a 2.4x boost [17].

Palacios et al. (2018) research presents the analysis of the

Prime Faces and Rich Faces libraries, in their average page

response time dimensions, and average Ajax response time,

to determine which one offers better performance. The

analysis was carried out through a Web page N layers, applied

in the management of academic tutoring University, a test

environment was set up on an Apache Tomcat Web server in

a Linux environment, with each of the libraries, also used the

JSF, Prime Faces and Rich Faces technologies. Performance

tests were based on the Neoload tool, simulating 350 requests

per second observing significant differences between the two

component libraries [18].

K Munonye et al. (2018) analyses and contrasts the efficiency

of REST APIs built using Java and Microsoft. Net. We used

Jersey to build RESTful APIs in Java and then deployed them

on top of the Apache Tomcat server. The same parameters

were used to construct RESTful APIs with MS. Net as well.

The Microsoft IIS Server was used to deliver Net Framework

6.0. The results were compared and assessed across several

test cases. In terms of processing PUT operations, the findings

demonstrated that the. net API outperformed the Java - based

API. Compared to the other API, the Net API had an 11.6%

faster processing time. On the other hand, the API that was

based on Java improved the speed of the GET operations by

simultaneously processing 80.36 percent more data [19].

Ansari et al. (2019), Programmers used key Java ideas like

Applet, Multithreading, and Polymorphism to create

standalone or mobile applications. However, web

applications also need extra technologies such as Servlet and

JSP. Spending more time and money developing a web app

utilising servlet, JSP, and core java methods increases the

likelihood of new issues and requires rewriting a large amount

of code in the event that the program needs future

modifications. Many large software organisations are

working on new frameworks and tools to alleviate these

issues, with the hope of reducing the workload and associated

costs of programmers. Any application may be produced

more quickly and at a lower cost by using one of the common

Java frameworks that are currently available. There are many

different frameworks available, each with its own set of

modules that may be used according to the needs of a project.

Some examples are Spring, Hibernate, Spring Boot, Struts,

and EJB. These frameworks cannot be used without first

doing the necessary research and analysis [20].

This table 1 outlines the key comparisons between the

research papers, highlighting their technological focus,

performance metrics, and major findings.

Table 1: Summarizing the key aspects of the related work
Author (s) Focus Area Technologies

/Frameworks

Performance Metrics/Analysis Key Findings

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1653

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

J. Correa et

al. [13]

Web application

development with Google

Web Toolkit (GWT) and

Google App Engine

GWT, Google App

Engine

Design and functionality

considerations under framework

restrictions, usability, UI,

scalability

Great benefits in UI, performance, and

scalability but constrained by framework

limitations

Rajeev BV et

al. [14]

Optimizing mobile web

application performance at

various layers

HTML, CSS,

JavaScript

Use case application with

performance baselining and

optimization techniques applied

across layers

Demonstrates the importance of multi -

layered optimization, improving

performance step by step

Javier Verdú

et al. [15]

Performance scalability of

parallel web applications

with multiple workers

HTML5, Web

Workers API

Analysis of scaling JavaScript

performance with multiple

threads/workers, assessing co -

running application impact

Provides insights into the optimal number

of workers for best performance across

browsers and hardware configurations

Peng Li et al.

[16].

Client/server Web

application coordination via

middleware and JavaScript

interpreter

Middleware,

JavaScript

interpreter

Modular coordination in

client/server workflows,

evaluating performance overhead

with the Java Pet Store

Coordination framework provides low -

performance overhead, offering flexibility

in client - server application development

Yohei Ueda

et al. [17]

Comparison of statically

compiled and dynamically

compiled languages for

server - side web

applications

Go, JavaScript, Java Acme Air benchmark to evaluate

throughput after tuning server

configuration

Go significantly outperforms JavaScript

and Java in throughput (3.8x vs. JS, 2.4x

vs. Java)

Palacios et

al. [18]

Performance comparison of

Prime Faces and Rich Faces

libraries for web application

development

Prime Faces, Rich

Faces, JSF, Apache

Tomcat

Average page and Ajax response

times analyzed using Neoload in

simulated load tests (350

requests/second)

RichFaces shows better performance in

average page response and Ajax times

K Munonye

et al. [19]

Performance comparison of

REST APIs implemented in

Java and Microsoft. Net

Java (Jersey),. Net

Framework, Apache

Tomcat, IIS

Performance comparison of

RESTful APIs (PUT, GET

operations)

. Net API performs better for PUT

operations, while Java API is superior for

GET, with 80.36% better processing rate

Ansari et al.

[20]

Comparison of Java

frameworks for web

application development

Java (Servlet, JSP,

Spring, Hibernate,

Struts)

Comparative analysis of Java

frameworks on developer effort,

cost, and ease of modification

Frameworks like Spring and Hibernate

reduce development time and cost,

simplifying updates and modifications

compared to traditional Servlet/JSP

approaches

7. Best Practices for Optimizing Web

Application Performance with Java

Here’s a concise summary of best practices for optimizing

web application performance with Java:

• Code Optimization: Focus on using efficient algorithms

and data structures. Minimize object creation in loops to

reduce garbage collection overhead and implement lazy

loading to defer data loading until necessary.

• Database Optimization: Utilize connection pooling to

manage database connections efficiently. Create indexes

on frequently queried columns and optimize SQL queries

by avoiding SELECT * and implementing pagination.

• Caching Strategies: Implement in - memory caching using

libraries like Ehcache or Redis for frequently accessed

data. Use HTTP caching strategies, such as ETag and

Cache - Control headers, to reduce server load for static

resources.

• Asynchronous Processing: Utilize Completable Future for

concurrent tasks and consider using message queues (e. g.,

RabbitMQ, Kafka) to decouple processing and handle

tasks asynchronously.

• Web Server and Application Server Tuning: Optimize

thread pool configurations based on expected load and set

appropriate connection timeouts to prevent hanging

requests.

Front - End Optimization:

• Minify JavaScript, CSS, and HTML files, and use Gzip or

Brotli compression to reduce payload sizes. Leverage a

Content Delivery Network (CDN) for serving static

resources.

• Monitoring and Profiling: Use profiling tools like

VisualVM and performance monitoring solutions like

Prometheus with Grafana to identify bottlenecks and

monitor application performance.

• JVM Tuning: Choose the right garbage collector (e. g.,

G1GC, ZGC) and tune GC parameters to minimize pause

times. Set appropriate initial and maximum heap sizes

based on memory requirements.

• Spring Framework Optimization: Limit excessive auto

wiring and use Spring Profiles to load only necessary

beans for specific environments, enhancing application

performance.

• Security Considerations: Limit data exposure by sending

only necessary data over the network and ensure data

validation and sanitization to prevent vulnerabilities.

8. Conclusion

In conclusion, Java continues to serve as a powerful tool for

developing web applications, offering scalability,

performance, and security. This paper has highlighted the

benefits of adopting a 3 - Tier architecture and best practices

for optimizing web application performance. By

implementing these practices, developers can significantly

enhance the user experience, operational efficiency, and

scalability of their Java based applications. Future research

could explore further optimization strategies, such as

advanced caching techniques and emerging technologies like

machine learning for performance prediction.

References

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1654

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[1] L. Olsina, G. Lafuente, and G. Rossi, “Specifying

Quality Characteristics and Attributes for Websites, ”

2001. doi: 10.1007/3 - 540 - 45144 - 7_26.

[2] H. B. Prajapati and V. K. Dabhi, “High quality web -

application development on java BE platform, ” in 2009

IEEE International Advance Computing Conference,

IACC 2009, 2009. doi: 10.1109/IADCC.2009.4809267.

[3] F. R. Gilbert and D. B. Dahl, “jsr223: A Java platform

integration for R with programming languages Groovy,

JavaScript, JRuby, Jython, and Kotlin, ” R J., 2019, doi:

10.32614/RJ - 2018 - 066.

[4] V. K. Yarlagadda and R. Pydipalli, “Secure

Programming with SAS: Mitigating Risks and

Protecting Data Integrity, ” Eng. Int., vol.6, no.2,

pp.211–222, Dec.2018, doi: 10.18034/ei. v6i2.709.

[5] V. V Kumar, M. Tripathi, M. K. Pandey, and M. K.

Tiwari, “Physical programming and conjoint analysis -

based redundancy allocation in multistate systems: A

Taguchi embedded algorithm selection and control

(TAS& C) approach, ” Proc. Inst. Mech. Eng. Part

O J. Risk Reliab., vol.223, no.3, pp.215–232, Sep.2009,

doi: 10.1243/1748006XJRR210.

[6] W. Del Ra, “Java application architecture, ” ACM

SIGSOFT Softw. Eng. Notes, 2013, doi:

10.1145/2413038.2413053.

[7] S. K. R. A. Sai Charan Reddy Vennapusa, Takudzwa

Fadziso, Dipakkumar Kanubhai Sachani, Vamsi

Krishna Yarlagadda, “Cryptocurrency - Based Loyalty

Programs for Enhanced Customer Engagement, ”

Technol. Manag. Rev., vol.3, no.1, pp.46–62, 2018.

[8] S. Elbaum, S. Karre, and G. Rothermel, “Improving

web application testing with user session data, ” in

Proceedings - International Conference on Software

Engineering, 2003. doi: 10.1109/icse.2003.1201187.

[9] M. S. Sharmila and E. Ramadevi, “Analysis of

Performance Testing on Web Applications, ” Int. J. Adv.

Res. Comput. Commun. Eng., 2014.

[10] O. Kwon and H. Bang, “Design Approaches of Web

Application with Efficient Performance in JAVA, ”

2011.

[11] A. S. Harji, P. A. Buhr, and T. Brecht, “Comparing high

- performance multi - core web - server architectures, ”

in ACM International Conference Proceeding Series,

2012. doi: 10.1145/2367589.2367591.

[12] X. Tan, “A database optimization model for java web

architecture, ” Int. J. Simul. Syst. Sci. Technol., 2016,

doi: 10.5013/IJSSST. a.17.10.04.

[13] J. D. Y. Correa and J. A. B. Ricaurte, “Web application

deveploment technologies using google web toolkit and

google app engine - java, ” IEEE Lat. Am. Trans., 2014,

doi: 10.1109/TLA.2014.6749559.

[14] Rajeev BV and K. Bakula, “A developer’s insights into

performance optimizations for mobile web apps, ” in

2015 IEEE International Advance Computing

Conference (IACC), IEEE, Jun.2015, pp.671–675. doi:

10.1109/IADCC.2015.7154791.

[15] J. Verdu and A. Pajuelo, “Performance Scalability

Analysis of JavaScript Applications with Web Workers,

” IEEE Comput. Archit. Lett., 2016, doi:

10.1109/LCA.2015.2494585.

[16] P. Li, “Modular and flexible coordination for web -

based applications, ” in 2nd International Conference

on Computer and Communication Systems, ICCCS

2017, 2017. doi: 10.1109/CCOMS.2017.8075176.

[17] Y. Ueda and M. Ohara, “Performance competitiveness

of a statically compiled language for server - side Web

applications, ” in ISPASS 2017 - IEEE International

Symposium on Performance Analysis of Systems and

Software, 2017. doi: 10.1109/ISPASS.2017.7975266.

[18] D. Palacios, J. Guamán, and S. Contento, “Analysis of

the performance of Java Server faces component

libraries in Web application development, ” vol.1,

pp.54–59, 2018, doi: 10.37135/unach. ns.001.02.06.

[19] K. Munonye and P. Martinek, “Performance Analysis

of the Microsoft. Net - and Java - Based Implementation

of REST Web Services, ” in SISY 2018 - IEEE 16th

International Symposium on Intelligent Systems and

Informatics, Proceedings, 2018. doi:

10.1109/SISY.2018.8524705.

[20] A. Ansari, “Analysis and Performance Issue of Java and

Its Framework and Impacts on Web Application, ”

2019. doi: 10.13140/RG.2.2.11281.48489.

Paper ID: SR20921115232 DOI: https://dx.doi.org/10.21275/SR20921115232 1655

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

