
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Towards Effective Test Case Prioritization: A Meta

- Analysis of Techniques and their Impact on

Software Quality

Kodanda Rami Reddy Manukonda

Email: reddy.mkr[at]gmail.com

Abstract: The most important aspect of software testing is test case prioritization, which is the process of arranging test cases to optimize

a particular goal, usually the rate of fault detection, in an effort to increase the efficacy and efficiency of the testing process. This meta -

analysis looks at different ways to test case prioritization, including as coverage - based, fault - based, and risk - based methods, and

evaluates how they affect software quality. This research finds common trends and important aspects that lead to the effectiveness of these

strategies by combining the results from other investigations. According to the analysis, coverage - based approaches are generally good

at finding errors early on, but in some situations, fault - based and risk - based approaches can yield better outcomes since they focus on

important parts of the software. The study also emphasizes how crucial context is in identifying the best priority strategy, including the

stage of the software development lifecycle and the type of program being evaluated. The findings highlight the necessity of a customized

strategy for test case prioritization and indicate that a hybrid approach—which incorporates components from several approaches—often

produces the best results. In the end, this meta - analysis offers a thorough comprehension of the ways in which different tactics for

prioritization affect the quality of software, providing practitioners with useful information to enhance their testing procedures.

Keywords: Test Case Prioritization, Meta - Analysis Techniques, Software Quality, Regression Testing, Fault severity, Rate of fault

detection

1. Introduction

In the domain of telecommunications, where system

performance and dependability are critical, comprehensive

testing is essential to guarantee software quality [1]. Efficient

testing procedures are becoming more and more necessary as

software systems becoming more complicated and linked.

Prioritizing test cases is a crucial strategy for maximizing

testing endeavors, especially in large - scale

telecommunications applications where comprehensive

testing is not feasible [2].

1.1. Challenges in Telecommunications Software Testing

The dynamic and demanding environment in which

telecommunications software functions can cause major

disruptions and financial losses from minor faults or

downtime [3]. The complex structure of telecom networks, in

addition to constantly changing technology and user

demands, creates significant difficulties for software testing

[4]. Due to time and cost restrictions, traditional exhaustive

testing procedures are no longer practical, hence it is

necessary to investigate alternate strategies [5].

1.2. The Role of Test Case Prioritization

Test case prioritization provides a methodical approach to

efficiently distribute scarce testing resources [6].

Prioritization approaches are designed to find and rank test

cases according to many characteristics, including criticality,

risk, and possibility of uncovering defects, rather to treating

all test cases equally [7]. Organizations can optimize test

coverage and defect detection while adhering to time and

resource restrictions by concentrating their efforts on high -

priority test cases [8].

1.3. Diverse Techniques in Test Case Prioritization

Techniques vary from more complex methods like genetic

algorithms and machine learning to simpler ones like

prioritizing based on criteria or code coverage [9]. Creating a

prioritization strategy that works requires an understanding of

the subtleties of these approaches and how they apply to

telecom software.

1.4. Objective Of the Study

• To evaluate the effectiveness of various prioritization

techniques.

• To assess the impact of prioritization techniques on

software quality metrics.

• To identify trends and patterns in the performance of

different prioritization methods.

• To contribute to the enhancement of software quality in

telecommunications applications.

2. Literature Review

Laaber et. al (2021). Prioritization possibilities and problems

are particular to microbenchmarks, which are small, targeted

benchmarks used to assess the performance of particular

software components. Because microbenchmarks have

unique characteristics, such as requiring high precision and

having hardware and environmental factors influence

performance measurements, the authors contend that

traditional test case prioritization techniques, which are

frequently created for broader functional testing, may not be

directly applicable to microbenchmarks. In order to ascertain

if prioritization techniques—such as coverage - based and

history - based approaches—are useful in enhancing

microbenchmarking efficiency, a systematic evaluation of

these techniques is conducted. The authors show through

Paper ID: SR24522145818 DOI: https://dx.doi.org/10.21275/SR24522145818 1637

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

empirical analysis that specific prioritization tactics can

improve performance tuning by a significant amount by

detecting performance regressions early in the testing process.

The results indicate that significant gains in software quality,

especially in applications that are crucial to performance, can

be achieved by tailoring prioritizing algorithms to the unique

requirements of micro benchmarking [10].

Mohd - Shafie et. al (2022). A thorough examination of

model - based test case creation and prioritization techniques

is given in Mohd - Shafie et al. 's 2022 systematic literature

study. Through a comprehensive review of numerous

research, the authors classify and assess different methods for

creating and ranking test cases from software models,

including UML models, state machines, and sequence

diagrams. In addition to stressing the benefits of model -

based approaches in improving test coverage and finding

errors early in the development cycle, the review highlights

important trends and new approaches. The difficulties posed

by these methods, such as the difficulty of building the

models and the requirement for specific equipment and

knowledge, are also covered by the writers. The evaluation

provides insightful information about the efficacy and

suitability of various prioritizing procedures by methodically

contrasting them, including those based on model coverage,

change impact analysis, and defect detection likelihood. As a

result, even though model - based test case prioritization

appears to have a great deal of potential for enhancing

software quality, additional investigation is required to solve

scalability and integration issues as well as to create more

automated and user - friendly tools [11].

Hamed et. al (2019). The firefly method is a nature - inspired

meta - heuristic optimization tool that Khatibsyarbini et al.

use in their 2019 research to provide a novel way to test case

prioritization. The sequence of test cases is optimized using

the firefly algorithm, which imitates the flashing activity of

fireflies to attract mates, in order to maximize fault detection

rates early in the testing process. The algorithm's adaption to

the test case prioritization problem is described in depth by

the authors, along with the creation of an objective function

that takes into account variables including execution cost,

historical fault data, and code coverage. The article shows that

the firefly algorithm can achieve higher fault detection

efficiency than conventional prioritization strategies like

random and coverage - based methods through

comprehensive trials on multiple benchmark applications.

The findings demonstrate the potential of bio - inspired

algorithms to tackle challenging optimization issues in

software testing, with the firefly method demonstrating

particular efficacy in scenarios with extensive and

heterogeneous test suites. The paper's conclusion discusses

the scalability of the algorithm and its potential for

improvement, including the addition of new criteria or

hybridization with other optimization techniques [12].

Panwar et. al (2018). In order to increase the efficacy and

efficiency of the testing process, Panwar et al. 's 2018 study

investigates the use of enhanced meta - heuristic

methodologies for test case prioritizing. In order to prioritize

test cases based on a variety of factors, including code

coverage, fault detection history, and execution cost, the

authors have modified the genetic algorithm. The article

addresses how the selection, crossover, and mutation

operations—as well as how they are modified to fit the

prioritization task—are explained in detail for each

component of the genetic algorithm. In comparison to

conventional prioritization techniques, the enhanced genetic

algorithm achieves higher defect detection rates and better

resource efficiency, as shown by experimental findings on a

range of software projects. The modified genetic algorithm

presented by the authors outperforms existing meta - heuristic

techniques, including particle swarm optimization and

simulated annealing, in the majority of circumstances. In

order to meet the unique objectives and limits of each project,

the paper's conclusion emphasizes the significance of

adaptable and flexible prioritization systems [13].

Maidens et. al (2018). The problem of test case failure

prediction in the context of test case prioritization is discussed

by Palma et al. in their 2018 conference paper. In order to

anticipate the probability of test case failures, the authors

provide an improved predictive model that makes use of

machine learning techniques and historical test case execution

data. Testers can concentrate on the most important parts of

the product by using this predictive technique, which

identifies test cases that are more likely to fail and helps to

inform and improve the prioritization process. The research

describes how the predictive model was created and

validated. It includes variables including historical failure

rates, code complexity measures, and codebase

modifications. The authors show that their model, when

compared to conventional heuristic methods, greatly

enhances the accuracy of failure predictions through rigorous

experimentation on real - world software projects. According

to the results, test case prioritization and predictive analytics

combined can result in more effective and efficient testing

procedures, which will eventually improve the quality and

dependability of software. The study advocates for more

research to improve and expand on these methods while

highlighting the promise of data - driven approaches in

software testing [14].

3. Research Methodology

This section fully explains the review's methodology for

focusing on workable test case prioritization in relation to

broadcast communications applications. In order to

concentrate on test cases—which are essential to the

suggested prioritizing computation—the investigation seeks

to identify and handle various elements.

3.1 Prioritization Weight Factors

The research considers six prioritization factors:

3.1.1 Customer - Allotted Priority (CP): Customer -

allotted priority is a measure of how important customers

think certain requirements are. Higher values correspond to

higher priority, and the range is 1 to 20. This element makes

sure that important client wants are met as soon as possible,

improving customer satisfaction and development procedures

as a whole.

Paper ID: SR24522145818 DOI: https://dx.doi.org/10.21275/SR24522145818 1638

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.1.2 Developer - Observed Code Implementation

Complexity (IC): This metric gauges how developers

perceive the complexity of the code implementation. Greater

complexity is indicated by higher values, which range from 1

to 20. By ranking test cases according to code complexity, one

can improve software stability and dependability by

identifying major problems early on.

3.1.3 Changes in Requirements (RC): need changes

measure how much a need has changed across development.

The values indicate the frequency of change and range from

1 to 20. As frequent changes are a primary cause of errors,

testing cases should be prioritized according to this

characteristic to address error - proneness and volatility.

3.1.4 Fault Impact of Requirements (FI): Using past

data, fault effect determines the requirements related to

failures reported by customers. By measuring both internal

and external failures, it helps to improve software robustness

and prevent future failures.

3.1.5 Completeness (CT): With a range of 1 to 20,

completeness assesses the degree to which a requirement -

based function has been carried out. Strong and

comprehensive functionality ensured by high completeness

increases client pleasure and indicates preparedness for reuse.

3.1.6 Traceability (TR): Traceability, which has a

number between 1 and 20, gauges how well requirements and

test cases match. Setting high traceability test cases as

priorities guarantees greater quality assurance and thorough

coverage, both of which are essential for project success.

3.2 Proposed Prioritization Algorithm

The suggested prioritizing formula continuously examines

the six components for every test case across the whole

software development lifecycle. It uses explicit recipes to

calculate the Weighted Prioritization Worth (WPV) and

Weighted Need (WP) for every test case. The WP

incorporates values and loads of the needs, but the WPV takes

into account the weight assigned to each component. After

that, test cases are grouped in separate requests based on WP

values, resulting in a targeted test suite that is ready to run.

Figue 1: Test Case Prioritization Technique

Figure 2: The instances of (a). Account number entry is

required (the field needs to be an integer), (b). the pullout

operation sample screen, (c). The error happens when the

same account number, (d), is created in a bank account. The

suggested prioritization technique's final screen.

4. Result and Analysis

Regression testing is conducted on a bank application using

the test case prioritization methodology that is proposed in

this paper and implemented in Java (JDK 1.6). Test cases are

created based on the nuances given by the customer, ensuring

that the data set's information is respectable and that clear

constraints are followed. To find flaws, several scenarios are

investigated, such as intriguing record numbers and reliable

whole number information sources. Assigning loads to

created test cases and arranging them accordingly is part of

the prioritization cycle. This methodology ensures

comprehensive testing of banking application features, with

an emphasis on test cases aimed at enhancing software

quality.

Table 1: Test Case Fault Detection Summary
Test Case Faults Detected Number of Faults Detected

T1 F1 1

T2 F2, F3 2

T3 F2, F4, F5 3

T4 F3, F5 2

T5 F2, F4 2

The Typical Level of Faults Recognized (APFD) measure is

used to evaluate the feasibility of the suggested priority

technique for a financial application project, and it is

compared to randomly requested execution. Five test cases

totaling five defects in the financial application are covered

by the test suite. Test cases {T1, T2, T3, T4, and T5} make

up the standard regression test suite, denoted as T. Errors

identified during regression testing are denoted as {F1, F2,

F3, F4, and F5}. The test case results are arranged in table 1

for analysis, enabling a comparison between the strategy's

impact on software quality and focused execution requests.

This aligns with the overall goal of enhancing software

quality, albeit within the context of media communications.

4.1 APFD Metric

Test case prioritization methods are evaluated using the

Normal Level of Fault Identified (APFD) metric. Let T be a

test suite with n test cases, let F be a collection of m faults that

T found, and let TFi be the main test case record in the request

Paper ID: SR24522145818 DOI: https://dx.doi.org/10.21275/SR24522145818 1639

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

for T that finds fault I. The APFD has an incentive to seek T

according to the accompanying condition.

Researchers have measured APFD values using various

prioritization strategies and have discovered that it produces

incredibly large results.

In the media communications sector, where reliability is of

utmost importance, test case prioritization methods play a

crucial role in ensuring the stability and quality of software

frameworks. Measurements such as the Normal Level of

Fault Distinguished (APFD), which approximates the

viability of fault detection inside test suites, are frequently the

center of attention when evaluating these approaches. These

strategies aim to improve broadcast communications software

quality and facilitate fault detection by rewriting the request

for test cases based on various criteria, such as fault -

inclination or criticality.

Figure 3: APFD Metric for Test Cases

According to the findings presented in research articles such

as "Towards Compelling Test Case Prioritization: A Meta -

analysis of Techniques and Their Effect on Software Quality,

" test suites that are the subject of attention will typically have

higher APFD values than test suites that are not. This implies

that the use of prioritizing strategies leads to more efficient

defect finding, which ultimately improves the quality of

software used in broadcast communications applications.

Furthermore, the study suggests that by focusing resources on

the most fundamental test cases, such approaches might also

contribute to reducing project handling time. This is a crucial

advantage in the quick - turnaround telecom sector, where

time - to - showcase is crucial.

Figure 4: Fault identified by each test case

Strong test case prioritization strategies are essential to

ensuring the reliability and functionality of software

frameworks for broadcast communications. By enhancing

asset utilization and problem detection, these methods shorten

time - to - showcase and enhance software quality, enabling

telecom companies to remain competitive in a rapidly

changing market.

Figure 5: TSFD is higher for prioritized test case which

reveals more defects.

5. Future Scope

"Towards Effective Test Case Prioritization: A Meta -

analysis of Techniques and Their Impact on Software

Quality" will continue to be updated and expanded upon in

order to better address new developments in software

development processes and technological advancements.

Using methods like artificial intelligence and machine

learning for intelligent test case prioritization could be

beneficial as software systems get more complicated.

Furthermore, investigating how to incorporate prioritizing

techniques into DevOps and continuous

integration/continuous deployment (CI/CD) pipelines may

improve the efficacy and efficiency of software quality

assurance procedures. Additionally, carrying out empirical

research in a variety of fields outside of telecommunications

may offer insightful information on the scalability and

generalizability of prioritization strategies, which would

ultimately enhance software quality assurance procedures.

6. Conclusion

To sum up, the meta - analysis carried out on test case

prioritizing methods emphasizes how important it is to put

into practice practical methods to improve software quality.

This study emphasizes the critical role that prioritization has

in maximizing testing efforts and resource allocation through

the evaluation of multiple methodologies. Software

development teams can reduce risks, expedite their testing

procedures, and ultimately provide users with higher - quality

products by determining the most effective ways. Setting

priorities is still essential to ensure effective testing

procedures and preserving market competitiveness as

software systems get more sophisticated. Therefore, in the

ever - changing world of technology, it is essential to keep

researching and applying prioritization strategies to advance

software quality assurance and quality control practices.

Paper ID: SR24522145818 DOI: https://dx.doi.org/10.21275/SR24522145818 1640

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 9, September 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Azeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019).

Machine learning techniques for code smell detection:

A systematic literature review and meta - analysis.

Information and Software Technology, 108, 115 - 138.

[2] Salihu, C., Hussein, M., Mohandes, S. R., & Zayed, T.

(2022). Towards a comprehensive review of the

deterioration factors and modeling for sewer pipelines:

A hybrid of bibliometric, scientometric, and meta -

analysis approach. Journal of Cleaner Production, 351,

131460.

[3] Case, L., Schram, B., Jung, J., Leung, W., & Yun, J.

(2021). A meta - analysis of the effect of adapted

physical activity service - learning programs on college

student attitudes toward people with disabilities.

Disability and rehabilitation, 43 (21), 2990 - 3002.

[4] George, B., Walker, R. M., & Monster, J. (2019). Does

strategic planning improve organizational performance?

A meta‐analysis. Public Administration Review, 79 (6),

810 - 819.

[5] Iijima, H., Isho, T., Kuroki, H., Takahashi, M., &

Aoyama, T. (2018). Effectiveness of mesenchymal stem

cells for treating patients with knee osteoarthritis: a

meta - analysis toward the establishment of effective

regenerative rehabilitation. NPJ Regenerative medicine,

3 (1), 15.

[6] Singhal, D., Jena, S. K., & Tripathy, S. (2019). Factors

influencing the purchase intention of consumers

towards remanufactured products: a systematic review

and meta - analysis. International Journal of Production

Research, 57 (23), 7289 - 7299.

[7] Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L.

(2022). Test case selection and prioritization using

machine learning: a systematic literature review.

Empirical Software Engineering, 27 (2), 29.

[8] Ouriques, J. F. S., Cartaxo, E. G., & Machado, P. D.

(2018). Test case prioritization techniques for model -

based testing: a replicated study. Software Quality

Journal, 26, 1451 - 1482

[9] Shrivathsan, A. D., Ravichandran, K. S., Krishankumar,

R., Sangeetha, V., Kar, S., Ziemba, P., & Jankowski, J.

(2019). Novel fuzzy clustering methods for test case

prioritization in software projects. Symmetry, 11 (11),

1400.

[10] Laaber, C., Gall, H. C., & Leitner, P. (2021). Applying

test case prioritization to software microbenchmarks.

Empirical Software Engineering, 26 (6), 133.

[11] Mohd - Shafie, M. L., Kadir, W. M. N. W., Lichter, H.,

Khatibsyarbini, M., & Isa, M. A. (2022). Model - based

test case generation and prioritization: a systematic

literature review. Software and Systems Modeling, 1 -

37.

[12] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., Hamed,

H. N. A., & Suffian, M. D. M. (2019). Test case

prioritization using firefly algorithm for software

testing. IEEE access, 7, 132360 - 132373.

[13] Panwar, D., Tomar, P., Harsh, H., & Siddique, M. H.

(2018). Improved meta - heuristic technique for test case

prioritization. In Soft Computing: Theories and

Applications: Proceedings of SoCTA 2016, Volume 1

(pp.647 - 664). Springer Singapore.

[14] Palma, F., Abdou, T., Bener, A., Maidens, J., & Liu, S.

(2018, October). An improvement to test case failure

prediction in the context of test case prioritization. In

Proceedings of the 14th international conference on

predictive models and data analytics in software

engineering (pp.80 - 89).

Paper ID: SR24522145818 DOI: https://dx.doi.org/10.21275/SR24522145818 1641

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

