International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064

Downloads: 0 | Views: 292

Analysis Study Research Paper | Computer Science | India | Volume 11 Issue 11, November 2022 | Rating: 4.8 / 10


Analysis of an Ensemble Model for Network Intrusion Detection

Rahul R S | Rithvik M [2] | Gururaja H S | Vikram K [4]


Abstract: Network security is extremely important and mission-critical not just only for business continuity but also for thousands of other huge and increasing number of systems and applications running over network continuously to deliver services. One of the ways network security is implemented and enforced is via intrusion detection or prevention systems. Traditional intrusion detection systems are usually rule-based and are not effective in detecting new and previously unknown intrusion events. Data mining techniques and machine algorithms have recently gained attention as an alternative approach to proactively detect network security breaches. In this project, these data mining algorithms: Decision Tree and Random Forest, Naive Baye, K-Nearest Neighbor (KNN) and Logistic Regression classifiers were implemented to detect and classify network intrusion using NSL-KDD dataset. The results obtained generally indicate that models are biased towards classes with low distribution in the dataset.


Keywords: data science, machine learning, network intrusion, IDS, naive bayes, decision tree, NLS, KDD, K-Nearest Neighbor, KNN, data mining, random forest, cybersecurity, computer science, network security, ensemble model


Edition: Volume 11 Issue 11, November 2022,


Pages: 85 - 90





Rate this Article


Select Rating (Lowest: 1, Highest: 10)

5

Your Comments

Characters: 0

Your Full Name:


Your Valid Email Address:


Verification Code will appear in 2 Seconds ... Wait

Top