Downloads: 109
M.Tech / M.E / PhD Thesis | Computer Science & Engineering | India | Volume 5 Issue 7, July 2016
Implementing K-Means Clustering Algorithm Using MapReduce Paradigm
Botcha Chandrasekhara Rao | Medara Rambabu
Abstract: Clustering is a useful data mining technique which groups data points such that the points within a single group have similar characteristics, while the points in different groups are dissimilar. Partitioning algorithm methods such as k-means algorithm is one kind of widely used clustering algorithms. As there is an increasing trend of applications to deal with vast amounts of data, clustering such big data is a challenging problem. Recently, partitioning clustering algorithms on a large cluster of commodity machines using the MapReduce framework have received a lot of attention. Traditional way of clustering text documents is Vector space model, in which tf-idf is used for k-means algorithm with supportive similarity measure. This project exhibits an approach to cluster text documents in which results obtained by executing map reduce k-means algorithm on single node cluster show that the performance of the algorithm increases as the text corpus increases.
Keywords: Vector space model, map reduce, text clustering, map reduce k-means, Hadoop
Edition: Volume 5 Issue 7, July 2016,
Pages: 1240 - 1244
Similar Articles with Keyword 'Vector space model'
Downloads: 117
Research Paper, Computer Science & Engineering, India, Volume 3 Issue 3, March 2014
Pages: 410 - 412Multi Keyword Searching Techniques over Encrypted Cloud Data
P. Shanmuga Priya | R. Sugumar [3]
Downloads: 118
Research Paper, Computer Science & Engineering, India, Volume 5 Issue 6, June 2016
Pages: 2044 - 2048Multi-keyword Ranked Search Over Encrypted Cloud Data Supporting Synonym Query
Siddheshwar S. Metkari | Dr. S. B. Sonkamble [2]