Downloads: 118
Research Paper | Electronics & Communication Engineering | India | Volume 4 Issue 2, February 2015
Comparison of Supervised Classification Methods On Remote Sensed Satellite Data: An Application In Chennai, South India
Madhura M [2] | Suganthi Venkatachalam
Abstract: This paper presents classification of various land cover types from the raw satellite image using supervised classifiers and performance of the classifiers are analyzed. Geo coded and Geo-referenced remote sensed images from Survey of India, Government of India Topographical maps are used. Prior to classification, Training process to assemble a set of statistics describing spectral response pattern of each land cover type is done. The quality of training plays a crucial role in success of classification. Classification is executed based on the spectral features using Minimum distance to mean classifier, Maximum likelihood classifier and Mahalanobis classifier. Efficiency of Classification results are assessed by using accuracy assessment and Confusion matrix. Performance of Maximum likelihood classifier is found to be better than other two. ERDAS IMAGINE 9.2, the worlds leading geospatial data authoring software is used.
Keywords: Spectral features, remote sensing, Minimum distance to mean classifier, Maximum likelihood classifier, Mahalanobis classifier, Accuracy assessment, confusion matrix, ERDAS IMAGINE 92
Edition: Volume 4 Issue 2, February 2015,
Pages: 1407 - 1411
Similar Articles with Keyword 'remote sensing'
Downloads: 105
Research Paper, Electronics & Communication Engineering, India, Volume 3 Issue 7, July 2014
Pages: 1873 - 1876A Novel Technique for the Estimation of Accurate Thickness of the Sea Ice
Mandeep Kaur [73] | Gagandeep Singh [8]
Downloads: 105
Research Paper, Electronics & Communication Engineering, India, Volume 5 Issue 6, June 2016
Pages: 1782 - 1786An Automatic Approach of Road Regions Extraction from Satellite Images based on Connected Component Algorithm
Mudit Shrivastava | Dr. D. M. Bhalerao