Downloads: 130 | Views: 290
Survey Paper | Computer Science & Engineering | India | Volume 5 Issue 6, June 2016 | Popularity: 6.7 / 10
Personalized and Real-Time Data Oriented Disease Inferring System
Rasla Azeez, Anju C R
Abstract: As we all know health status is an concerning factor by each human. An important problem of current Web search is that search queries are usually short and not enough for knowledge inferring, and thus are not good enough for specifying the precise user need. Automatic disease inference is of importance to reduce the distance between knowledge to be inferred and needs of the user. This knowledge mining is useful especially for community-based health services due to the vocabulary gap, incomplete information, correlated medical concepts, and limited high quality training samples. There are many online and offline methods are there to getting the information requested by the health seeker. Methods like questionnaire, deep learning are used as inferring methods. Here the sparse deep learning algorithm is used as the data mining technique. In this paper, here first perform a health seeker study on the information needs of health seekers in terms of queries. Some attributes used are raw features, signatures, medical attributes etc. Deep learning refers to the depth wise analysis of the raw features and their signatures as input nodes in one layer and hidden nodes in the next layers of the learning architecture. . Because of the deepest and alternative repeating of these features, our architecture a sparsely connected deep learning technique maintained with three hidden layers. That is, it learns the internal relations between the data collected and several layers. signature mining will produces the deepest knowledge about enquiry process towards health seekingIt will give out specic tasks with ne-tuning, pre-tuning etc. Several experiments on day today dataset given by online doctors show the signicant performance and importance of this disease inference. Here along with sparse deep learning, real-time health data, user history and bidirectional querying makes the system much useful than the existing system.
Keywords: SVM Support Vector Machine, Sparse deep learning, Classifiers, Querying, Signature mining
Edition: Volume 5 Issue 6, June 2016
Pages: 235 - 238
DOI: https://www.doi.org/10.21275/16051601
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 1
Survey Paper, Computer Science & Engineering, India, Volume 3 Issue 12, December 2014
Pages: 886 - 889Survey on Algorithms Predicting Performance of Keyword Queries
Snehal Borole
Downloads: 2 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science & Engineering, India, Volume 12 Issue 6, June 2023
Pages: 1168 - 1174A Machine Learning Approach for the Diagnosis of Chronic Kidney Disease
Divya Pogaku, Sneha Bohra
Downloads: 3 | Weekly Hits: ⮙2 | Monthly Hits: ⮙2
Survey Paper, Computer Science & Engineering, India, Volume 10 Issue 6, June 2021
Pages: 716 - 720A Comprehensive Study of Elasticsearch
Nikita Kathare, O. Vinati Reddy, Dr. Vishalakshi Prabhu
Downloads: 3 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Analysis Study Research Paper, Computer Science & Engineering, Canada, Volume 12 Issue 10, October 2023
Pages: 2054 - 2058An Evaluation of a Haar Cascade Classifiers using Multi-Resolution Images and Multi-Threading Resources on a Raspberry Pi
Qussay Salih
Downloads: 4 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science & Engineering, India, Volume 10 Issue 10, October 2021
Pages: 214 - 218A Recognition System for Handwritten Digits Using CNN
Ayesha Siddiqa, Chakrapani D S