Downloads: 3 | Views: 186 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper | Computer Science & Engineering | India | Volume 12 Issue 8, August 2023 | Popularity: 5.5 / 10
Evaluating Fairness in Healthcare Machine Learning: A Quantitative Approach
K. Roopa
Abstract: As machine learning models become increasingly integral to healthcare, concerns about their fairness in decision - making processes arise. This paper introduces a robust quantitative methodology to measure fairness in healthcare - oriented machine learning algorithms. By evaluating diverse datasets, we identified notable performance disparities across patient subgroups, such as gender and ethnicity. These findings highlight that even models optimized for accuracy can inadvertently perpetuate systemic biases. To counteract these imbalances, we propose specific mitigation strategies, demonstrating their efficacy in enhancing fairness without compromising overall performance. Our research underscores the importance of ensuring equitable AI applications in healthcare, emphasizing that accuracy and fairness must coexist for the optimal benefit of all patients. While there's broad recognition of the need to address fairness, the healthcare domain lacks a comprehensive quantitative metric to assess and counteract it. This paper introduces a novel quantitative measure designed to evaluate fairness in ML algorithms, emphasizing its applicability to healthcare scenarios. We formulate the metric by grounding it in the intricacies of healthcare data and its multifaceted challenges. Our empirical analysis, conducted on multiple healthcare datasets, showcases the utility of our measure in identifying and mitigating biases. The results underscore the metric's potential in aiding the development of more equitable ML models, ensuring that advancements in healthcare ML are both transformative and just for all patient demographics.
Keywords: Algorithmic fairness, machine learning, healthcare, quantitative measure, bias, Adversarial Debiasing
Edition: Volume 12 Issue 8, August 2023
Pages: 2270 - 2274
DOI: https://www.doi.org/10.21275/SR23820234214
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 176 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science & Engineering, India, Volume 9 Issue 11, November 2020
Pages: 457 - 461Artificial Intelligence for Hiring
Ishan Borker, Ashok Veda
Downloads: 656 | Weekly Hits: ⮙1 | Monthly Hits: ⮙2
Research Paper, Computer Science & Engineering, India, Volume 9 Issue 7, July 2020
Pages: 1454 - 1458Heart Disease Prediction with Machine Learning Approaches
Megha Kamboj
Downloads: 137 | Weekly Hits: ⮙2 | Monthly Hits: ⮙3
Research Paper, Computer Science & Engineering, India, Volume 4 Issue 2, February 2015
Pages: 2246 - 2249Packet Analysis with Network Intrusion Detection System
Rashmi Hebbar, Mohan K
Downloads: 0
Student Project, Computer Science & Engineering, India, Volume 11 Issue 6, June 2022
Pages: 1875 - 1880Microclustering with Outlier Detection for DADC
Aswathy Priya M.
Downloads: 0
Survey Paper, Computer Science & Engineering, India, Volume 11 Issue 8, August 2022
Pages: 947 - 949COVID-19 Prediction using Machine Learning Algorithms
Saily Suresh Patil