International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 3 | Views: 158 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Analysis Study Research Paper | Computer Science | India | Volume 13 Issue 2, February 2024 | Popularity: 5.5 / 10


     

Beyond the Average: Personalized Causal Inference in Econometrics with Machine Learning

Deepa Shukla


Abstract: In the realm of econometrics, the estimation of average treatment effects (ATE) has traditionally dominated causal inference, often oversimplifying the complex, heterogeneous nature of individual responses to interventions. This study introduces a nuanced approach, "Beyond the Average: Personalized Causal Inference in Econometrics with Machine Learning, " which leverages advanced machine learning (ML) algorithms to shift the focus towards personalized causal effects (PCE), thereby uncovering the variability in treatment effects across individuals. Utilizing a synthetic dataset designed to reflect realistic economic behaviors and responses, we employed Gradient Boosting Machines (GBM) and Causal Forests among other ML techniques to estimate conditional average treatment effects (CATE), providing insights into the heterogeneity of treatment impacts. Our methodology encompassed comprehensive data preprocessing, feature selection based on economic theory and ML insights, and rigorous model validation processes. The results reveal significant heterogeneity in treatment effects, challenging the conventional reliance on ATE and highlighting the importance of considering individual characteristics in policy design and evaluation. Specifically, younger individuals and those with lower income and education levels exhibited markedly different responses to the financial literacy intervention, suggesting that personalized approaches could significantly enhance the effectiveness of such programs. This study not only demonstrates the feasibility and value of applying ML to econometric analysis for personalized causal inference but also lays the groundwork for future research aimed at integrating these methodologies into practical policy - making. By moving beyond the average and embracing the complexity of individual differences, econometric analysis can offer more targeted, effective, and equitable solutions to societal challenges.


Keywords: Personalized causal inference, Econometrics, Machine learning, Treatment effects, Predictive analytics


Edition: Volume 13 Issue 2, February 2024


Pages: 937 - 941


DOI: https://www.doi.org/10.21275/SR24210172433



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
Deepa Shukla, "Beyond the Average: Personalized Causal Inference in Econometrics with Machine Learning", International Journal of Science and Research (IJSR), Volume 13 Issue 2, February 2024, pp. 937-941, https://www.ijsr.net/getabstract.php?paperid=SR24210172433, DOI: https://www.doi.org/10.21275/SR24210172433



Similar Articles

Downloads: 0

Analysis Study Research Paper, Computer Science, India, Volume 11 Issue 11, November 2022

Pages: 85 - 90

Analysis of an Ensemble Model for Network Intrusion Detection

Rahul R S, Rithvik M, Gururaja H S, Vikram K

Share this Article

Downloads: 0

Research Paper, Computer Science, India, Volume 11 Issue 12, December 2022

Pages: 1060 - 1063

An Effectual Cardiovascular Disease Classification Using Ensemble Classifier with Oversampling Approach

R. Saranya, Dr. D. Kalaivani

Share this Article

Downloads: 0

Research Paper, Computer Science, India, Volume 13 Issue 7, July 2024

Pages: 544 - 546

Detecting Stress in Software Professionals: A Machine Learning and Image Processing Approach

Geethu C Nair, Kavya T S, Shilpa S

Share this Article

Downloads: 1

Review Papers, Computer Science, Saudi Arabia, Volume 11 Issue 2, February 2022

Pages: 854 - 860

Rumor Detection Using Machine Learning in Social Media: A Survey

Afnan Alsadhan, Monirah Al-Ajlan, Mehmet Sabih Aksoy

Share this Article

Downloads: 1

Review Papers, Computer Science, India, Volume 11 Issue 5, May 2022

Pages: 283 - 286

Intrusion Detection using Machine Learning

Bhumika Malik, Nivedita Singh

Share this Article



Top