Downloads: 107 | Views: 256
Survey Paper | Computer Science & Engineering | India | Volume 3 Issue 12, December 2014 | Popularity: 6.8 / 10
Survey of Adaptive Novel Class Detection and Classification of Feature-Evolving Data Streams
Punam D. Dhande, Dr. A. M. Dixit
Abstract: In the data mining communities, Data stream classification causes number of difficulties. There are four major difficulties present. Those are: 1. Infinite Length 2. Concept-Drift.3. Concept-Evolution.4. Feature-Evolution. Since a data stream has hypothetically infinite length, it is unreasonable to store and utilize all the past data for training. Concept-drift is a regular incident in data streams, which takes place as a consequence of modification in the core concepts. Concept-evolution takes place as a consequence of new classes developing in the stream. Feature-evolution is an often happening process in number of streams, for example, text streams, in which new features that is words or expressions, show up as the stream advances. Most of present data stream classification methods tackle merely the initial two difficulties, and disregard the last two. To tackle concept-drift and concept-evolution, an ensemble classification technique can be implemented, in which every classifier is equipped by a novel class detector. A feature set homogenization method can be implemented for tackling feature-evolution. Also the novel class identification module can be improved by making it more versatile to the advancing stream, and empowering it to detect number of novel class at once.
Keywords: Data stream classification, Infinite Length, Concept-Drift, Concept-Evolution, Feature-Evolution
Edition: Volume 3 Issue 12, December 2014
Pages: 187 - 189
Make Sure to Disable the Pop-Up Blocker of Web Browser
Downloads: 656 | Views: 2000
Computer Science & Engineering, India, Volume 9 Issue 7, July 2020
Pages: 1454 - 1458Heart Disease Prediction with Machine Learning Approaches
Megha Kamboj
Downloads: 401 | Views: 718
Computer Science & Engineering, India, Volume 7 Issue 11, November 2018
Pages: 1951 - 1955Hadoop Performance Improvement using Metadata and Securing with Oauth Token
Swapnali A. Salunkhe, Amol B. Rajmane
Downloads: 386 | Views: 698
Computer Science & Engineering, India, Volume 9 Issue 12, December 2020
Pages: 1 - 3Comparative Study of Conventional Desktop Computer and Compute Stick
Aadarsh Sooraj, Sooraj G.
Downloads: 354 | Views: 698
Computer Science & Engineering, India, Volume 3 Issue 6, June 2014
Pages: 629 - 632Review Paper on Secure Hashing Algorithm and Its Variants
Priyanka Vadhera, Bhumika Lall
Downloads: 336 | Views: 687
Computer Science & Engineering, India, Volume 3 Issue 6, June 2014
Pages: 2148 - 2152The Impact and Application of 3D Printing Technology
Thabiso Peter Mpofu, Cephas Mawere, Macdonald Mukosera