Downloads: 120 | Views: 317 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper | Statistics | Indonesia | Volume 4 Issue 2, February 2015 | Popularity: 7 / 10
Poverty Data Modeling in North Sumatera Province Using Geographically Weighted Regression (GWR) Method
Kristina Pestaria Sinaga
Abstract: In regular regression equation, a response variable is connected with some predictor variables in one main output, which is parameter measurement. This parameter explains relationships of every predictor variable with response variable. However, when it is applied to spatial data, this model is not always valid because the location difference can result in different model estimation. One of the analyses that recommend spatial condition is locally linear regression called Geographically Weighted Regression (GWR). The basic idea from this GWR model is the consideration of geographical aspect or location as weight in estimating the model parameter. Model parameter estimation of GWR is obtained using Weight Least Square (WLS) by giving different weights to every location where the data is obtained. In many analyses of GWR, also in this research, the weight used is Gauss Kernel, which needs bandwidth value as distance parameter that still affects each location. Bandwidth optimum can be obtained by minimalizing cross validation value. In this research, the researcher aims to compare the results of global regression model with GWR model in predicting poverty percentage. The data used as a case study are data from 33 cities/regencies in North Sumatera province.
Keywords: GWR, WLS, Kernel Function, Poverty
Edition: Volume 4 Issue 2, February 2015
Pages: 1738 - 1742
Make Sure to Disable the Pop-Up Blocker of Web Browser