Downloads: 108 | Views: 316 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper | Information Technology | India | Volume 4 Issue 4, April 2015 | Popularity: 7 / 10
Healthcare Insurance Fraud Detection Leveraging Big Data Analytics
Prajna Dora, Dr. G. Hari Sekharan
Abstract: Health Insurance fraud is a major crime that imposes significant financial and personal costs on individuals, businesses, government and society as a whole. So there is a growing concern among the insurance industry about the increasing incidence of abuse and fraud in health insurance. Health Insurance frauds are driving up the overall costs of insurers, premiums for policyholders, providers and then intern countries finance system. It encompasses a wide range of illicit practices and illegal acts. This paper provides an approach to detect and predict potential frauds by applying big data, hadoop environment and analytic methods which can lead to rapid detection of claim anomalies. The solution is based on a high volume of historical data from various insurance company data and hospital data of a specific geographical area. Such sources are typically voluminous, diverse, and vary significantly over the time. Therefore, distributed and parallel computing tools collectively termed big data have to be developed. Paper demonstrate the effectiveness and efficiency of the open-source predictive modeling framework we used, describe the results from various predictive modeling techniques. The platform is able to detect erroneous or suspicious records in submitted health care data sets and gives an approach of how the hospital and other health care data is helpful for the detecting health care insurance fraud by implementing various data analytic module such as decision tree, clustering and naive Bayesian classification. Aim is to build a model that can identify the claim is a fraudulent or not by relating data from hospitals and insurance company to make health insurance more efficient and to ensure that the money is spent on legitimate causes. Critical objectives included the development of a fraud detection engine with an aim to help those in the health insurance business and minimize the loss of funds to fraud.
Keywords: Big Data, Hadoop, RHadoop, Decision tree, Naive Bayesian classification, Clustering
Edition: Volume 4 Issue 4, April 2015
Pages: 2073 - 2076
Make Sure to Disable the Pop-Up Blocker of Web Browser
Downloads: 357 | Views: 1000 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Information Technology, Ghana, Volume 8 Issue 6, June 2019
Pages: 64 - 69The Use of Information and Communication Technology (ICT) in Teaching and Learning of Mathematics in Al-Faruq College of Education, Wenchi-Ghana
Abu Sulemana, Yahuza Abdul-Kadir
Downloads: 301 | Views: 558 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Information Technology, India, Volume 8 Issue 1, January 2019
Pages: 456 - 460Analysis of Blockchain and its Working Principle
S. Banupriya, G. Renuka Devi
Downloads: 266 | Views: 407 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Information Technology, China, Volume 9 Issue 1, January 2020
Pages: 107 - 112Network Optimization using Multi-Agent Genetic Algorithm
Sikandar Hanif
Downloads: 260 | Views: 471 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Information Technology, Malaysia, Volume 8 Issue 1, January 2019
Pages: 64 - 70University of the Future (UotF): Redesign Business Model for Local University in Malaysia through Humanising Education and 4IR
Nor Zaiasron Bin Yahaya, Abdul Rahman Bin Ahmad Dahlan
Downloads: 254 | Views: 418 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Information Technology, India, Volume 9 Issue 1, January 2020
Pages: 477 - 479IoT Based Smart Street Light for Energy Efficiency and Safety
Tanmay Patil, Arjun Ramendra