International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 137 | Views: 308

Research Paper | Computer Science & Engineering | India | Volume 3 Issue 3, March 2014 | Popularity: 6.7 / 10


     

An Efficient Divergence and Distribution Based Similarity Measure for Clustering Of Uncertain Data

Geetha, Mary Shyla


Abstract: Data Mining is the extraction of hidden predictive information from large databases. Clustering is one of the popular data mining techniques. Clustering on uncertain data, one of the essential tasks in mining uncertain data, posts significant challenges on both modeling similarity between uncertain objects and developing efficient computational methods. The previous methods extend traditional partitioning clustering methods. Such methods cannot handle uncertain objects that are geometrically indistinguishable, such as products with the same mean but very different variances in customer ratings. Surprisingly, probability distributions, which are essential characteristics of uncertain objects, have not been considered in measuring similarity between uncertain objects. In Existing method to use the well-known Kullback-Leibler divergence to measure similarity between uncertain objects in both the continuous and discrete cases, and integrate it into partitioning and density-based clustering methods to cluster uncertain objects. It is very costly or even infeasible. The proposed work introduces the well-known Kernel skew divergence to measure similarity between uncertain objects in both the continuous and discrete cases. Measuring the cluster similarity with Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time and/or space and to further speed up the computation.


Keywords: Clustering, uncertain data, Kernel skew Divergence and distribution


Edition: Volume 3 Issue 3, March 2014


Pages: 333 - 339



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
Geetha, Mary Shyla, "An Efficient Divergence and Distribution Based Similarity Measure for Clustering Of Uncertain Data", International Journal of Science and Research (IJSR), Volume 3 Issue 3, March 2014, pp. 333-339, URL: https://www.ijsr.net/getabstract.php?paperid=13031403, DOI: https://www.doi.org/10.21275/13031403



Downloads: 656 | Views: 2004

Computer Science & Engineering, India, Volume 9 Issue 7, July 2020

Pages: 1454 - 1458

Heart Disease Prediction with Machine Learning Approaches

Megha Kamboj


Downloads: 401 | Views: 722

Computer Science & Engineering, India, Volume 7 Issue 11, November 2018

Pages: 1951 - 1955

Hadoop Performance Improvement using Metadata and Securing with Oauth Token

Swapnali A. Salunkhe, Amol B. Rajmane


Downloads: 386 | Views: 703

Computer Science & Engineering, India, Volume 9 Issue 12, December 2020

Pages: 1 - 3

Comparative Study of Conventional Desktop Computer and Compute Stick

Aadarsh Sooraj, Sooraj G.


Downloads: 354 | Views: 700

Computer Science & Engineering, India, Volume 3 Issue 6, June 2014

Pages: 629 - 632

Review Paper on Secure Hashing Algorithm and Its Variants

Priyanka Vadhera, Bhumika Lall


Downloads: 336 | Views: 690

Computer Science & Engineering, India, Volume 3 Issue 6, June 2014

Pages: 2148 - 2152

The Impact and Application of 3D Printing Technology

Thabiso Peter Mpofu, Cephas Mawere, Macdonald Mukosera


Top