International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 159 | Views: 353

Research Paper | Computer Science & Engineering | India | Volume 5 Issue 12, December 2016 | Popularity: 6.8 / 10


     

Customers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms

S. Induja, Dr. V. P. Eswaramurthy


Abstract: With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a foremost aspect of a contemporary telecom CRM system. Churn prediction model leads the customer relationship management to retain the customers who will be possible to give up. Currently scenario, a lot of outfit and monitored classifiers and data mining techniques are employed to model the churn prediction in telecom. Within this paper, Kernelized Extreme Learning Machine (KELM) algorithm is proposed to categorize customer churn patterns in telecom industry. The primary strategy of proposed work is organized the data from telecommunication mobile customers dataset. The data preparation is conducted by using pre-processing with Expectation Maximization (EM) clustering algorithm. After that, customer churn behavior is examined by using Naive Bayes Classifier (NBC) in accordance with the four conditions like customer dissatisfaction (H1), switching costs (H2), service usage (H3) and customer status (H4). The attributes originate from call details and customer profiles which is enhanced the precision of customer churn prediction in the telecom industry. The attributes are measured using BAT algorithm and KELM algorithm used for churn prediction. The experimental results prove that proposed model is better than AdaBoost and Hybrid Support Vector Machine (HSVM) models in terms of the performance of ROC, sensitivity, specificity, accuracy and processing time.


Keywords: Churn prediction, Expectation Maximization, Kernelized Extreme Learning Machine, data preparation, pre-processing, attribute selection, BAT algorithm, Naive Bayes Classifier


Edition: Volume 5 Issue 12, December 2016


Pages: 258 - 265



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
S. Induja, Dr. V. P. Eswaramurthy, "Customers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms", International Journal of Science and Research (IJSR), Volume 5 Issue 12, December 2016, pp. 258-265, https://www.ijsr.net/getabstract.php?paperid=ART20163399, DOI: https://www.doi.org/10.21275/ART20163399



Similar Articles

Downloads: 0

Survey Paper, Computer Science & Engineering, India, Volume 11 Issue 7, July 2022

Pages: 1023 - 1029

A Survey and High-Level Design on Human Activity Recognition

Abhishikat Kumar Soni, Dhruv Agrawal, Md. Ahmed Ali, Dr. B. G. Prasad

Share this Article

Downloads: 2 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Masters Thesis, Computer Science & Engineering, India, Volume 11 Issue 7, July 2022

Pages: 1502 - 1505

Model of Decision Tree for Email Classification

Nallamothu Naveen Kumar

Share this Article

Downloads: 5

Survey Paper, Computer Science & Engineering, India, Volume 10 Issue 5, May 2021

Pages: 948 - 951

Survey on Various Image Segmentation Techniques

Babita Chauhan

Share this Article

Downloads: 10 | Weekly Hits: ⮙1 | Monthly Hits: ⮙5

Research Paper, Computer Science & Engineering, India, Volume 12 Issue 9, September 2023

Pages: 1447 - 1451

Detecting and Classifying Inappropriate Content in Youtube Videos Using Deep Learning Approach

Sanaboina Chandra Sekhar, Yandamuri Eswara Anil

Share this Article

Downloads: 108

Review Papers, Computer Science & Engineering, India, Volume 3 Issue 9, September 2014

Pages: 1979 - 1982

Palm Vein Authentication: A Review

Gitanjali Sikka, Er. Vikas Wasson

Share this Article
Top