Downloads: 124 | Views: 361
Research Paper | Mathematics | Nigeria | Volume 7 Issue 8, August 2018 | Popularity: 6.4 / 10
Methods for Determining Fractal Dimensions
Maurice Nnamdi ANNORZIE
Abstract: In this paper, A is considered to be a non-empty compact subset of a metric space X. For each small positive number, the minimum number of closed balls of radius, needed to cover A is denoted by N (A,). The objective is to obtain the fractal dimension of A, denoted by D (A), which is the limit as tends to zero of the ratio if this limit exists. Three main methods are discussed with relevant geometrical and theoretical ideas leading to determination of fractal dimension of the given set. The methods showed that the fractal dimension, D (A), exists for all compact subset of n-dimensional Euclidean space, , where D (A) is equal to both the Hausdorff-Besicovitch dimension, D_H and the Packing dimension, D_P due to self-similarity property of fractals.
Keywords: Fractals, Fractal Dimension, Hausdoff-Besicovitch Dimension, Packing Dimension and Self-similarity
Edition: Volume 7 Issue 8, August 2018
Pages: 1653 - 1656
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 3 | Weekly Hits: ⮙1 | Monthly Hits: ⮙2
Analysis Study Research Paper, Mathematics, India, Volume 12 Issue 7, July 2023
Pages: 1973 - 1975Exploring the Hutchinson-Barnsley Operator in the Context of M-Fuzzy Metric Spaces
Dr. Priyanka
Downloads: 126
Research Paper, Mathematics, India, Volume 5 Issue 2, February 2016
Pages: 915 - 918Determination of Diabetic Retinopathy Using Fractals
Dr. V. Shanthoshini Deviha