Extended Bolzano Weierstrass Theorem
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 109 | Views: 299 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Research Paper | Mathematics | India | Volume 9 Issue 8, August 2020 | Popularity: 6.3 / 10


     

Extended Bolzano Weierstrass Theorem

Dr. K. L. Kaushik


Abstract: In this paper we have proved the Extended Bolzano Weierstrass theorem i. e. Let (an) ∞ n=1 be an bounded sequence. Define the set G = {x ∈R: x < an for infinitely many terms an} Then ∃ a subsequence (ank) converges to a supremum of the set G.


Keywords: Convergence, Bounded, supremum, Completeness


Edition: Volume 9 Issue 8, August 2020


Pages: 820 - 822



Please Disable the Pop-Up Blocker of Web Browser

Verification Code will appear in 2 Seconds ... Wait



Text copied to Clipboard!
Dr. K. L. Kaushik, "Extended Bolzano Weierstrass Theorem", International Journal of Science and Research (IJSR), Volume 9 Issue 8, August 2020, pp. 820-822, https://www.ijsr.net/getabstract.php?paperid=SR20815190956, DOI: https://www.doi.org/10.21275/SR20815190956

Top