Downloads: 8 | Views: 117 | Weekly Hits: ⮙1 | Monthly Hits: ⮙3
Comparative Studies | Computer Science | United States of America | Volume 13 Issue 9, September 2024 | Popularity: 5.6 / 10
Comparative Study of Pre-Trained Models for Breast Cancer Classification: Challenges and Future Directions
Cibaca Khandelwal
Abstract: Accurately diagnosing breast cancer through histopathological images is crucial for making the right treatment decisions. In this study, the performance of three pre - trained deep learning models - MobileNetV2, ResNet50, and DenseNet121 was evaluated in classifying breast tumor images from the BreakHis dataset as benign or malignant. We calculated detailed metrics such as accuracy, AUC - ROC, and Cohen's Kappa for assessment. DenseNet121 stood out, achieving a test accuracy of 99.93%, a perfect AUC - ROC of 1.0, and a Cohen's Kappa score of 0.9984, demonstrating its strong ability to differentiate between benign and malignant cases. MobileNetV2 is known for its efficiency and balanced accuracy with resource usage, making it a solid choice for resource - limited environments. The performance of DenseNet121 was statistically confirmed to be significantly better than ResNet50, indicating its potential usefulness in clinical settings where high precision is essential. However, this study did not address the class imbalance in the dataset, which could affect the results. Future research will address this imbalance to enhance model performance further and contribute to developing effective, resource - efficient deep learning models for medical image analysis.
Keywords: Breast Cancer Classification, Deep Learning Models, Histopathological Images, DenseNet121, AUC - ROC, Class Imbalance
Edition: Volume 13 Issue 9, September 2024
Pages: 107 - 110
DOI: https://www.doi.org/10.21275/SR24830204827
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 2 | Weekly Hits: ⮙2 | Monthly Hits: ⮙2
Review Papers, Computer Science, India, Volume 12 Issue 11, November 2023
Pages: 1880 - 1885Emotion in Text: A Survey of Sentiment Analysis Techniques and Applications
Shrinath Pai
Downloads: 6 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science, India, Volume 12 Issue 10, October 2023
Pages: 2099 - 2106Analysis of Algorithms Used for Detection of Breast Cancer
Krishna Mansinghka
Downloads: 150
Research Paper, Computer Science, China, Volume 9 Issue 4, April 2020
Pages: 339 - 342Effect of Local Dynamic Learning Rate Adaptation on Mini-Batch Gradient Descent for Training Deep Learning Models with Back Propagation Algorithm
Joyce K. Ndauka, Dr. Zheng Xiao Yan