Downloads: 113 | Views: 264
Review Papers | Computer Science & Engineering | India | Volume 3 Issue 12, December 2014 | Popularity: 6.1 / 10
Role of Different Fuzzy Min- Max Neural Network for Pattern Classification
Jaitra Chakraborti
Abstract: Different neural networks related to Fuzzy min-max (FMM) has been studied and amongst all, Enhanced Fuzzy min-max (EFMM) neural network is most recent. For classification of patterns a new Enhanced Fuzzy Min-Max (EFMM) algorithm has been studied. The aim of EFMM is to improve the performance and minimize the restrictions that are possessed by original fuzzy min-max (FMM) network. Three heuristic rules are used to improve the learning algorithm of FMM. First, to eliminate the problem of overlapping during hyperbox expansion, new overlapping rules has been suggested. Second, to discover other overlapping cases the hyperbox test rule has been extended. Third, to resolve the hyperbox overlapping cases, hyperbox contraction rule is provided.
Keywords: Fuzzy minmax FMM model, hyperbox structure, neural network learning, online learning, pattern classification
Edition: Volume 3 Issue 12, December 2014
Pages: 1343 - 1346
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 3 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science & Engineering, India, Volume 10 Issue 11, November 2021
Pages: 1220 - 1223Emotion Detector and Counsellor Chatbox
Lingamgunta Nikhilesh
Downloads: 108
Survey Paper, Computer Science & Engineering, India, Volume 3 Issue 12, December 2014
Pages: 2715 - 2717Privacy Preserving ANN Over Cloud
Babaso Shinde, Ajay Gupta