International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 107 | Views: 329

Survey Paper | Computer Science & Engineering | India | Volume 3 Issue 12, December 2014 | Popularity: 6.3 / 10


     

Survey on Outlier Pattern Detection Techniques for Time-Series Data

Archana N., S. S. Pawar


Abstract: Outlier patterns are unusual or surprising patterns that occur rarely, and, thus, have lesser support (frequency of appearance) in the data. Outlier patterns reveal many hidden facts that indicate inconsistency in the data such as fraudulent transactions, network intrusion, change in customer behavior, epidemic and disease severity, intense weather conditions, recession in the economy, etc. Outlier detection has been studied in a variety of data domains including high-dimensional uncertain data, streaming data, network data and time series data. The scope of this survey is limited to time series data. Detecting these outlier patterns rather than other frequent patterns is more important because outlier patterns indicate interesting discrepancies and is crucial for analysis and further decision-making. Outlier values in the data are different from surprising, unusual, or outlier patterns in the data. Outlier Pattern detection in time-ordered sequences discovers in the time series all patterns that exhibit temporal regularities. Considering temporal aspect, interesting outlier patterns can be discovered which otherwise would not have been discovered. The periodicity detection of outlier patterns is to be performed after the detection of these outlier patterns for better analysis of data. Periodic outlier patterns can be found in heart beat pulses, outlier light curves in catalogs of periodic stars, weather data, transactions history, stock price movement, protein and DNA sequences etc. In this paper, the different outlier detection techniques for time series and the existing algorithms in the area are surveyed.


Keywords: Periodic patterns, time series, pattern mining, outlier pattern, periodicity detection


Edition: Volume 3 Issue 12, December 2014


Pages: 1852 - 1856



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
Archana N., S. S. Pawar, "Survey on Outlier Pattern Detection Techniques for Time-Series Data ", International Journal of Science and Research (IJSR), Volume 3 Issue 12, December 2014, pp. 1852-1856, URL: https://www.ijsr.net/getabstract.php?paperid=SUB14806, DOI: https://www.doi.org/10.21275/SUB14806



Downloads: 656 | Views: 1998

Computer Science & Engineering, India, Volume 9 Issue 7, July 2020

Pages: 1454 - 1458

Heart Disease Prediction with Machine Learning Approaches

Megha Kamboj


Downloads: 401 | Views: 714

Computer Science & Engineering, India, Volume 7 Issue 11, November 2018

Pages: 1951 - 1955

Hadoop Performance Improvement using Metadata and Securing with Oauth Token

Swapnali A. Salunkhe, Amol B. Rajmane


Downloads: 386 | Views: 694

Computer Science & Engineering, India, Volume 9 Issue 12, December 2020

Pages: 1 - 3

Comparative Study of Conventional Desktop Computer and Compute Stick

Aadarsh Sooraj, Sooraj G.


Downloads: 354 | Views: 696

Computer Science & Engineering, India, Volume 3 Issue 6, June 2014

Pages: 629 - 632

Review Paper on Secure Hashing Algorithm and Its Variants

Priyanka Vadhera, Bhumika Lall


Downloads: 336 | Views: 683

Computer Science & Engineering, India, Volume 3 Issue 6, June 2014

Pages: 2148 - 2152

The Impact and Application of 3D Printing Technology

Thabiso Peter Mpofu, Cephas Mawere, Macdonald Mukosera


Top