International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 121 | Views: 268

Review Papers | Electronics & Communication Engineering | India | Volume 4 Issue 3, March 2015 | Popularity: 6.8 / 10


     

A Review of Dimensionality Reduction Techniques

Bothe Priya V., Rangole Jyoti S.


Abstract: High-dimensional data are common in many domains, and dimensionality reduction is the necessary to cope with the curse-of-dimensionality. This phenomenon states that an enormous number of samples is required to perform accurate predictions on problems with high dimensionality. Dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information, can be an effective solution. Different statistical methods for dimensionality reduction have been proposed in recent years and various research groups have reported contradictory results when comparing them. The commonly used dimensionality reduction techniques include supervised approaches such as Linear Discriminant Analysis (LDA), and unsupervised ones such as Principal Component Analysis (PCA), and additional spectral and manifold learning methods. When class labels are available, the supervised approaches such as LDA are generally more effective than the unsupervised ones like PCA for classification. This paper aims at the review of two most widely used dimensionality reduction techniques, PCA and LDA. Based on this a way ahead will be presented to facilitate research and development in sediment classification.


Keywords: Dimensionality reduction, Linear Discriminant Analysis LDA, model selection, Principal Component Analysis PCA


Edition: Volume 4 Issue 3, March 2015


Pages: 1106 - 1109



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
Bothe Priya V., Rangole Jyoti S., "A Review of Dimensionality Reduction Techniques", International Journal of Science and Research (IJSR), Volume 4 Issue 3, March 2015, pp. 1106-1109, https://www.ijsr.net/getabstract.php?paperid=SUB152306, DOI: https://www.doi.org/10.21275/SUB152306



Similar Articles

Downloads: 118

Research Paper, Electronics & Communication Engineering, India, Volume 4 Issue 9, September 2015

Pages: 2010 - 2015

Facial Expression Recognition from Video Using Eigen Values

Manish Trivedi, Ruchi Chaurasia, Manoj Tolani

Share this Article

Downloads: 119

Research Paper, Electronics & Communication Engineering, India, Volume 2 Issue 12, December 2013

Pages: 383 - 388

Multiview Face Recognition based on Canonical Correlated PCA

B. Mamatha

Share this Article
Top